The Kalman Filter Derived: The Power of Gaussians

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 6

  • @honzasvoboda7987
    @honzasvoboda7987 หลายเดือนก่อน

    Really nice video! I would suggest putting every video of this kind into a playlist so that it is easier for you to get views on other videos, since all of them are really good and they deserve to be viewed more. :)

    • @jameshan8
      @jameshan8  27 วันที่ผ่านมา

      Thank you and thanks for the suggestion! I'll do that now :)

  • @SolvinSigurdson
    @SolvinSigurdson ปีที่แล้ว

    Wow, really useful - thanks for putting this together! Clear derivation and great animations!

  • @santoshprajapat7709
    @santoshprajapat7709 2 หลายเดือนก่อน

    Great work
    It's really helpfull

  • @jik4107
    @jik4107 4 หลายเดือนก่อน

    are The variables μt bar and Σt​ bar are the same as the mean mt​ and the covariance Ψt (where here they are considered predicted to get a predicted x)?

    • @jameshan8
      @jameshan8  2 หลายเดือนก่อน

      Great question! Nono it is not the same in this case. Notice how we're taking the derivatives with respect to x_{t-1}. When we complete the square for x_{t-1} we get m_t and Psi_t. The point of finding m_t and Psi_t is to complete the square for x_{t-1}. Once we have this form, we can exploit that fact that the integral of e^quadratic is simply a constant (it is a constant because the integral of any probability distribution is 1. For a Gaussian, if we match the quadratic form in the exponential, everything in front is a constant that normalizes the distribution). Does that make sense?