Projection Theorem | Special Case of the Wigner-Eckart Theorem

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ม.ค. 2025

ความคิดเห็น • 13

  • @israayusuf3712
    @israayusuf3712 3 ปีที่แล้ว +2

    How can you make such topic sound so easy? You are a legend!

  • @forrestx
    @forrestx 4 ปีที่แล้ว +5

    Thank you for putting the time into making extremely helpful physics videos! They are extremely interesting. Thank you!

    • @PrettyMuchPhysics
      @PrettyMuchPhysics  4 ปีที่แล้ว +1

      What a nice comment, thank you very much for your feedback! :)

  • @quahntasy
    @quahntasy 4 ปีที่แล้ว +2

    *Loved it. Thanks for this*

  • @ankestoltzel1708
    @ankestoltzel1708 4 ปีที่แล้ว +2

    In Sakurai, I found the theorem with the scalar product of A and J the other way around. But they don't commute?!

    • @PrettyMuchPhysics
      @PrettyMuchPhysics  4 ปีที่แล้ว +4

      It's true that in general, A and J do not commute. In particular, all we assumed is that A is a vector operator. This means, the following equation must hold:
      (1) [ A_i , J_j ] = i epsilon_ijk A_k
      If the components of A fulfill eq. (1), then A is a vector operator. Now, the term we are interested in is A_i J_i. However when you set the indices i and j equal in eq. (1), then:
      (2) [ A_i , J_i ] = i epsilon_iik A_k = 0 (because two indices are the same)
      This means that A_i J_i = J_i A_i. If A has some additional commutator relations with J (independent of it being a vector operator), then things might get trickier.

  • @ADRI-zu1us
    @ADRI-zu1us 4 ปีที่แล้ว +3

    Well you sure have a very affective community needless to say

  • @quahntasy
    @quahntasy 4 ปีที่แล้ว +1

    Btw what's wrong with the comments lol? All of them seem to be in Love with you LOL

    • @PrettyMuchPhysics
      @PrettyMuchPhysics  4 ปีที่แล้ว +6

      I guess that has to be the power of the projection theorem 🥰

    • @quahntasy
      @quahntasy 4 ปีที่แล้ว +2

      @@PrettyMuchPhysics lol