integral of sqrt(x+sqrt(x+sqrt(x+...))), infinite nested square root

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 381

  • @Roarshark12
    @Roarshark12 7 ปีที่แล้ว +211

    You make solving these fun plus you're so *positive* and *happy* and that's what reaches me ^_^. /THAT'S IT!/

  • @hamzaaldajani6802
    @hamzaaldajani6802 7 ปีที่แล้ว +27

    I noticed that y^2 is equal to y+x (because it's an infinite serie). You can solve the ecuation y^2 -y-x , taking x as constant by using the cuadratic formula, and you integrate

  • @mlihan9571
    @mlihan9571 7 ปีที่แล้ว +393

    Are you using a blue pen? I feel cheated lol.

    • @lex736
      @lex736 5 ปีที่แล้ว +6

      Han Li no he is using a blue expo marker.

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 7 ปีที่แล้ว +273

    Yo dawg, I see you put the function out of the function so that you didn't have to integrate while you integrate.

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +41

      AndDiracisHisProphet that's correct hahaha

    • @darkmage35
      @darkmage35 6 ปีที่แล้ว +4

      I tried it without removing the function from the function. Turns out what you really have to do is differentiate while you integrate. Because when u = x + y then du = (1 + dy/dx)dx, and in the u world you end up integrating sqrt(u) - 1/2 du, producing an answer of Y = (x + y)(2y/3 - 1/2) + c.

    • @ShaliniGupta-to7ne
      @ShaliniGupta-to7ne 6 ปีที่แล้ว +4

      AndDiracisHisProphet give me your WhatsApp number

    • @dolevgo8535
      @dolevgo8535 6 ปีที่แล้ว +15

      Shalini Gupta wtf

    • @happypiano4810
      @happypiano4810 4 ปีที่แล้ว

      ...What?

  • @TheSenator007
    @TheSenator007 5 ปีที่แล้ว +20

    "And we're done" *Continues to write down the integration constant* That's how it's done ;-)

  • @thomasg6830
    @thomasg6830 7 ปีที่แล้ว +278

    The math is easy to understand, but what i don't get is:
    Are there a rabbit and a cat, both named Oreo? 🍪🐇🐈

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +87

      thomas g yes. Owned by different friends

    • @einsteingonzalez4336
      @einsteingonzalez4336 6 ปีที่แล้ว +7

      That's because both of them have some black and white fur. Besides, that's the same as the Oreo cookie. (So it's a pun, maybe Cao intended a pun?)

    • @leif1075
      @leif1075 5 ปีที่แล้ว +1

      @@blackpenredpen is this not the same,thing as x to the one half plus x to the one fourth plus x to the one eighth, etc.?

    • @ujjubhai6097
      @ujjubhai6097 3 ปีที่แล้ว +1

      @@blackpenredpen sir I will say that the answer is x^2/2

    • @mr_meow_77
      @mr_meow_77 3 ปีที่แล้ว

      @@ujjubhai6097 no it's wrong

  • @davidkippy101
    @davidkippy101 6 ปีที่แล้ว +7

    All you have to do is implicitly differentiate y^2-y=x, which becomes dy/dx= 1/(2y-1), then you substitute the integrand for y and dx for (2y-1)dy and integrate to get 2/3y^3-1/2y^2

  • @mathunt1130
    @mathunt1130 4 ปีที่แล้ว +7

    With the expression y^2-y=x, you have a perfect equation for substitution.

  • @gustavosedano294
    @gustavosedano294 7 ปีที่แล้ว +10

    This guy is awesome

  • @tanmaywho
    @tanmaywho 4 ปีที่แล้ว +1

    You made me understand so easy. Thanks

  • @ShBenEd
    @ShBenEd 7 ปีที่แล้ว +1

    Dude youre great at this!

  • @rosebuster
    @rosebuster 7 ปีที่แล้ว +44

    Cute rabbit and cute cat! Animals make everything better!

  • @rome8726
    @rome8726 5 ปีที่แล้ว +2

    Some good integral is always satisfying. 😊

  • @emmeeemm
    @emmeeemm 4 ปีที่แล้ว +5

    Hm. I did this slightly differently. I started with the substitution, got to y=sqrt(x+y), and then to y^2-y=x. But then, I just did u-sub from there, asserting (2y-1)dy = dx. I plugged that into the original integral, and integrated y(2y-1)dy to get (2/3)y^3 - (1/2)y^2 + C, and then I back-substituted the terms of x. So, my answer didn't end up as a closed form.
    The method in this video is pretty cool. Most parts of the result are similar to my answer. I bet with a little algebra, it could be shown that they're equivalent.

  • @Fematika
    @Fematika 7 ปีที่แล้ว +80

    y(1) is the golden ratio, as you can see on my channel. :)

    • @alperberkinyazc6575
      @alperberkinyazc6575 7 ปีที่แล้ว +2

      Fematika im 9th viewer of it :)):):)

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +11

      Fematika yes!
      Btw, congrats on 200 subs!

    • @Metalhammer1993
      @Metalhammer1993 7 ปีที่แล้ว +2

      hey what´s your profile picture? it kinda looks lie a p-orbital to me. is that correct? (could be a d-orbital as well but i better ask because my eyes are horrifyingly bad^^)

    • @Fematika
      @Fematika 7 ปีที่แล้ว +2

      Yeah, that's what it is!

    • @TyronTention
      @TyronTention 7 ปีที่แล้ว

      Are you another fellow math and chemistry fan, like myself? :)

  • @TheMauror22
    @TheMauror22 7 ปีที่แล้ว +16

    Do an integral battle with some Of these crazy functions!

  • @pradeepkumarbhatt6616
    @pradeepkumarbhatt6616 4 ปีที่แล้ว

    Very interesting problem and good method to solve it.Ramanujan was greatest mathematician giving a lot of excellent theorems and results regarding infinite series.

  • @alhussain221
    @alhussain221 6 ปีที่แล้ว +11

    I noticed that when we substitute 1 in our expression ( 1/2 + sqrt (4x+1) / 2) we get (sqrt(5) + 1)/2 which is the golden ratio. Amazing🔥

    • @n0ame1u1
      @n0ame1u1 5 ปีที่แล้ว +4

      The golden ratio is the solution to the equation "x²-x-1 = 0". The equation we have is "y = √(x+y)", which is just the positive solution to "y² - y - x = 0". So for x=1, we have "y²-y-1 = 0", which will give us the golden ratio.

  • @vcvartak7111
    @vcvartak7111 3 ปีที่แล้ว

    Expressing y in terms x by adding 1/4 and make it perfect square is nice step

  • @paulwilm6759
    @paulwilm6759 4 ปีที่แล้ว

    Thanks, you just helped us with our math contest

  • @satyapalsingh4429
    @satyapalsingh4429 3 ปีที่แล้ว

    Very good method of solving . Keep it up!

  • @mdhasnain_3764
    @mdhasnain_3764 3 ปีที่แล้ว +1

    Tomorrow is my physical education exam, idk why I am attracted so badly to ur videos and maths, that I am not even studying for that exam😥

  • @Tammyaway
    @Tammyaway 6 ปีที่แล้ว +2

    No need to find y, instead you can use the substitution (which you already calculated) x=y^2-y and calculated the integral immediately.

  • @dawandyudh7532
    @dawandyudh7532 4 ปีที่แล้ว

    Colour combination is fabulous

  • @axa122
    @axa122 3 ปีที่แล้ว

    holyyy shittt I'm now at the age to finally understand your videos. this is amazing.

    • @Tree_5_1
      @Tree_5_1 7 หลายเดือนก่อน

      Which class plz tell me

  • @アヤミ
    @アヤミ 5 ปีที่แล้ว +10

    5:14 wait what if x is in the interval range [-0.25, 0)? Then the minus in the plusminus also makes a positive number! No one said an imaginary number can’t appear in an integral!

    • @samarthst534
      @samarthst534 5 ปีที่แล้ว

      Square root is defined only for positive numbers of x right?

    • @GhostyOcean
      @GhostyOcean 5 ปีที่แล้ว +2

      The original domain of the function is x≥0, so the internal you suggested doesn't exist.

    • @GhostyOcean
      @GhostyOcean 5 ปีที่แล้ว

      Regarding your "imaginary number in the integral" it depends on what you're integrating. If the function and it's domain are strictly real, then it's not acceptable to have i's in the integral. (There are some exceptions like sin(x)=(e^ix -e^-ix)/(2i), but those are the exception and not the rule)

    • @n0ame1u1
      @n0ame1u1 5 ปีที่แล้ว

      The equation "y = √(x+y)" has two solutions for x on (-0.25, 0]. But the equation "y=√(x+√(x+√(x+√(x+...))))" doesn't really make sense for negative x (if you're only dealing with real values).

  • @lisalisa9706
    @lisalisa9706 7 ปีที่แล้ว +52

    If you define the function f(x)=√(x+√(x+...)), it seems to me that f(0)=0. But in the expression 1/2 + 1/2√(4x+1), it gives 1. Though in 1/2 - 1/2√(4x+1) it gives 0. Wouldn't the correct sign be - then?

    • @lisalisa9706
      @lisalisa9706 7 ปีที่แล้ว +22

      Oh, it might not be zero because it's an infinite expression. Maybe f goes to 1 as x goes to 0. Would you make a video on that?

    • @oli199615
      @oli199615 7 ปีที่แล้ว +21

      The correct sign is still +. The reason why it doesn't work with 0, but with every other number, is that the limit sqrt(x+sqrt(x+...)) isn't continuous at 0.

    • @TheYoshi463
      @TheYoshi463 7 ปีที่แล้ว +7

      f(0) can also be 1. Consider y=sqrt(x+y) => f(0)=sqrt(0+y) which is fullfilled for both 0 and 1 (which is what you would expect, since that's pretty much the equation he solved).

    • @TehDragonGuy
      @TehDragonGuy 7 ปีที่แล้ว +3

      It's because y=√(x+y) has two points where x=0, at y=0 and y=1, whereas y=√(x+√(x+...)) only has the one, at y=0. Therefore both expressions give roots of y=√(x+y), but only the negative one gives the root of f(x)=√(x+√(x+...)).

    • @philp4684
      @philp4684 7 ปีที่แล้ว +2

      Ronald K.: But can we freely choose any value for y[0] in the case where x = 0, or is it possible that only y[0] = 0 leads us to the "correct" result?
      What if sqrt(x + sqrt(x + ...)) is defined this way:
      lim n->infinity y[n](x),
      where y[0](x) = sqrt(x)
      y[1](x) = sqrt(x + sqrt(x)),
      y[2](x) = sqrt(x + sqrt(x + sqrt(x))
      y[n](x) = sqrt(x + sqrt(x + ...)) {containing n+1 "sqrt" terms}
      Then, when x = 0, we have y[0] = 0, y[1] = 0, y[2] = 0, ... y[n] = 0 for all n. Which, being a sequence of zeroes, trivially converges to zero.

  • @fano72
    @fano72 4 ปีที่แล้ว

    Nice Performance

  • @Mandakins347
    @Mandakins347 4 ปีที่แล้ว +1

    This is fun I'm going to watch this in my free time

  • @maximilianludwig4301
    @maximilianludwig4301 7 ปีที่แล้ว +6

    Man. You are soo cool. Continue doing it. I just understand little things, because I'm just in 10 grad but I like watching you explaining this stuff. Can you make a basic video about integration. Why, How... This would be cooool

    • @dcs_0
      @dcs_0 7 ปีที่แล้ว +2

      You should watch Khan Academy's already existing guide to integration - its how i learnt when I was 13 yrs old. It's really good!

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +4

      I have my site. Www.blackpenredpen.com and check out the calc resources

    • @maximilianludwig4301
      @maximilianludwig4301 7 ปีที่แล้ว +2

      Daniel Shapiro thx

    • @dcs_0
      @dcs_0 7 ปีที่แล้ว +1

      TH-cam is so incredible! I'm amazed by the amount of excellent resources over TH-cam (especially maths :D). It's such an amazing time to be educated in; all you need is an interest.

  • @Scy
    @Scy 7 ปีที่แล้ว

    I don't know what just happened, but it made sense to me.

  • @guilhermeguimaraes1858
    @guilhermeguimaraes1858 7 ปีที่แล้ว +86

    This suit looks awesome in u

    • @Alisssap
      @Alisssap 7 ปีที่แล้ว +4

      Guilherme Guimarães yep

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +9

      Guilherme Guimarães thank you!!!

    • @hetsmiecht1029
      @hetsmiecht1029 4 ปีที่แล้ว +3

      But does it also look good in the x world?

  • @khaledhasan9438
    @khaledhasan9438 3 ปีที่แล้ว

    Love from Bangladesh 🇧🇩

  • @xtosu9643
    @xtosu9643 6 ปีที่แล้ว

    Just learning integration, this is insane!

  • @Muhammad_ittyy
    @Muhammad_ittyy 4 ปีที่แล้ว

    Thx from Syria

  • @templare251993
    @templare251993 7 ปีที่แล้ว +1

    That's awesome!

  • @thedounut100
    @thedounut100 7 ปีที่แล้ว +1

    at 1:38 can you take a derivative of both sides and get
    2ydy-dy=dx
    (2y-1)dy=dx
    then plug y for the stuff you're integrating and (2y-1)dy for dx?
    It doesn't get a closed form but is there anything wrong with that?

  • @doppler5748
    @doppler5748 7 ปีที่แล้ว +3

    i don't know what a integral is but i did understand most of what you were doing until, 4:04 i started to get lost, but still good video

  • @mathbattles1471
    @mathbattles1471 3 ปีที่แล้ว

    It can also be solved using "y" substitution and doing implicit diffrentiation to get dx.

  • @eman0706
    @eman0706 3 ปีที่แล้ว

    amazing proof!

  • @pco246
    @pco246 7 ปีที่แล้ว +1

    y(0)=1 or 0 depending on your definition... √0+√0+√0+√0+√0+√0...=0 but 1/2+(√0+1)/2=1.

  • @oussamasmihrou274
    @oussamasmihrou274 5 ปีที่แล้ว +1

    I highly suspect how smoothly you play with the infinity... lol just like Ramanujan in his beginnings

  • @柳哲凱
    @柳哲凱 7 ปีที่แล้ว +1

    讲的太好啦!

  • @murad4622
    @murad4622 5 ปีที่แล้ว

    In the 5:30sh, if you set x=0, then y as defined under the radical should also be equal to 0. This implies that you have to consider the -ve sign instead of the +ve (here: y= 1/2 +/-1/2 sqrt(4x+1)

    • @murad4622
      @murad4622 5 ปีที่แล้ว

      @blackpenredpen
      Please have a look at my note! Please explain

  • @PedroTricking
    @PedroTricking 7 ปีที่แล้ว

    And you also found a formula for y! Nice!

  • @ekamjitsingh8933
    @ekamjitsingh8933 4 ปีที่แล้ว

    At 1:36 you are squaring both sides so you should open right hand side with modulus

  • @vanambalong3325
    @vanambalong3325 4 ปีที่แล้ว +1

    Can you integrate it in terms of y, right?

  • @someperson188
    @someperson188 7 ปีที่แล้ว

    The presentation shows that "if" the sequence y_n(x) defined by
    y_0(x) = sqrt(x); y_(n+1)(x) = sqrt(x + y_n(x)), for n>=0
    converges, then it must converge to
    y(x) = (1 + sqrt(4x +1))/2, for x>0. But it does "not" show that the sequence y_n(x) converges.
    For example, suppose we define
    z_0(x) = x; z_(n+1)(x) = x(z_n(x)), for n>=0.
    If this sequence converges to z(x), then z(x) = x(z(x)),
    z(x)(1-x) = 0, z(x) = 0, if x isn't 1. But z_n(x) clearly diverges if x > 1 or x = 0 is outlined in my comments to BlackpensRedpen's other video on the derivative of y(x).
    I again thank him for his very instructive videos.

  • @alperberkinyazc6575
    @alperberkinyazc6575 7 ปีที่แล้ว +1

    I like your new suit it makes you a workman-officer :)

  • @jarikosonen4079
    @jarikosonen4079 5 ปีที่แล้ว

    It looks good that such infinite loop reduces a lot...

  • @soumitradas3714
    @soumitradas3714 5 ปีที่แล้ว +2

    This is really a awesome and outstanding approach.
    This really helps me, and I hope others also.
    Thank you very much sir.

  • @msolec2000
    @msolec2000 3 ปีที่แล้ว +1

    The CTS isn't necessary, right? you have y² - y + x = 0 and you apply the quadratic formula, you get the same result.

    • @PubicGore
      @PubicGore 3 ปีที่แล้ว

      No ,of course it's not necessary. But so what if it's not necessary? It's easier and less tedious than using the quadratic formula.

  • @royalstatus2104
    @royalstatus2104 6 ปีที่แล้ว

    Very good brother

  • @josdurkstraful
    @josdurkstraful 3 ปีที่แล้ว

    What is the practical use of all this?

  • @diegom7771
    @diegom7771 7 ปีที่แล้ว

    it´s magic. you´re magic. fantastic.

  • @ahmedamin1557
    @ahmedamin1557 5 ปีที่แล้ว

    We should use the negative version as x=0 , y=0 if we use any value of x , y may be divergent

  • @illogicmath
    @illogicmath 7 ปีที่แล้ว +13

    There's something wrong. If x≠0 the equation fails giving 0=1

    • @hOREP245
      @hOREP245 5 ปีที่แล้ว +1

      We've assumed our function Y is greater than 0, so x=0 is a problem

    • @That_One_Guy...
      @That_One_Guy... 5 ปีที่แล้ว +1

      i dont think you can get a zero from an infinitely small expression, when that expression is also always gonna be non-negative

    • @PsychoMurdoctor
      @PsychoMurdoctor 5 ปีที่แล้ว +1

      The problem is the expression is undefined when x < 0, and disconnected at x=0; therefore, you can only define the integral as he did for x > 0. If x is any positive number, the value of the expression is positive, and as x approaches 0 from the positive side, the expression's value approaches 1; however, when x is 0, the expression value is 0. Since the limit as x approaches 0 is different from the actual value when x = 0, you can only define the integral as he did when x > 0.
      Another way to look at it is this: when the "+/-" is introduced for the square root operation, the "+" is used when x > 0, but the "-" is used when x = 0. So the expression is equal to (1+sqrt(4x+1))/2 when x > 0, or (1-sqrt(4x+1))/2 when x = 0.

    • @n0ame1u1
      @n0ame1u1 5 ปีที่แล้ว +1

      ​@@PsychoMurdoctor The equation "y = √(x+y)" actually has two positive solutions for -0.25

  • @payammahbobi8029
    @payammahbobi8029 4 ปีที่แล้ว

    Well done!

  • @omermuharremyagcioglu
    @omermuharremyagcioglu 3 ปีที่แล้ว

    handsome, genius, friendly good man

  • @isaacsmith2079
    @isaacsmith2079 6 ปีที่แล้ว

    I got (2/3)y^3+(1/2)y^2+C by using dx=(1+2y)dy. And this is what I love about math. These answers are so different, but through a little algebra they are equivalent!

    • @anilkumarshukla9107
      @anilkumarshukla9107 5 ปีที่แล้ว

      Same answer bro....but how can this be changed to what sir had written?

    • @anilkumarshukla9107
      @anilkumarshukla9107 5 ปีที่แล้ว

      But there will be a minus sign in the middle

  • @babajani3569
    @babajani3569 4 ปีที่แล้ว

    5:40 yeah but what if x is so small, like 0.1 for example, then when you minus from a half you will get a positive number. What about then? Plz explain. Thank you and have a nice day.

  • @martini.1999
    @martini.1999 4 ปีที่แล้ว

    How do you know, which way to go?

  • @gabrielhermesson9926
    @gabrielhermesson9926 5 ปีที่แล้ว

    Something that blows my mind a little is that, when x=0, that infinite nest doesn't equal zero--it equals [1/2][1+ sqrt(1+4*0)] = 1.

  • @rangaswamyks8287
    @rangaswamyks8287 3 ปีที่แล้ว

    Please cut of more explanation
    While solving such problems
    So that we can comprehend easilly sir.. Thank you for solving such a beautiful problem

  • @MrJapogm
    @MrJapogm 7 ปีที่แล้ว

    It is puzzling to know that some functions are disguised in Halloween. (that is how I imagined this function) Thanks a lot.

  • @stephenstruble5064
    @stephenstruble5064 7 ปีที่แล้ว +3

    That was awesome. A bit advanced for me, but a lot of this will come in handy in the future. My next course is Trigonometry.

  • @marionkokkinou7281
    @marionkokkinou7281 4 ปีที่แล้ว

    if x was between 0 and 1 we could also keep the minus infront of the root;
    love your vids

  • @残念賞
    @残念賞 3 ปีที่แล้ว

    I saw it on Japanese youtuber "予備校のノリで学ぶ数学・物理", called "yobinori".

  • @abhishansapoonia800
    @abhishansapoonia800 4 ปีที่แล้ว

    Wow sir👏👏👏👏

  • @reubengeorgemathai7329
    @reubengeorgemathai7329 7 ปีที่แล้ว

    What was that c for ? The integration I don't think needed a constant of integration,

  • @aintaintaword666
    @aintaintaword666 5 ปีที่แล้ว +24

    But does sqrt(x+sqrt(x+...)) always converge? What if it doesn't?

    • @isaacdeutsch2538
      @isaacdeutsch2538 5 ปีที่แล้ว +3

      for the entire domain of the original integrand, it converges to the shown value of y. y has some negative domain, but we don't care about that because integrating the original function will only have positive bounds! so integrating them will be the same for all feasible bounds :)

  • @shayantankabiraj677
    @shayantankabiraj677 4 ปีที่แล้ว

    That was pretty easy..
    Yes I am a jee aspirant...

  • @taruntomar7795
    @taruntomar7795 7 ปีที่แล้ว

    thanks for uploading

  • @mushannexd79
    @mushannexd79 3 ปีที่แล้ว

    Thank you so much I love you

  • @misugijun
    @misugijun 6 ปีที่แล้ว +1

    I wonder wasn't that (-) possibility worth considering? There is a possibility 4x+1 could be smaller than 1 right. In that case (1/2) - (sqrt(4x+1)/2) doesn't become negative.

  • @Yuras20
    @Yuras20 7 ปีที่แล้ว +1

    It seems like the infinite square root for x=0 willl be 1/2 + sqrt(1/2) which is more than 0.

  • @xelinthium2889
    @xelinthium2889 2 ปีที่แล้ว

    can't believe that I was watching this just for fun 😂

  • @ReubenMason99
    @ReubenMason99 7 ปีที่แล้ว +5

    What does the graph of this function look like?

    • @faxhandle9715
      @faxhandle9715 7 ปีที่แล้ว

      Reuben Mason I was thinking the same thing. I guess without using software you could calculate the limits for several values of x, just to get an idea of the curve, but I don't know if the infinite function has a limit or diverges. I really don't know. I am super rusty, but it is interesting for sure.

    • @faxhandle9715
      @faxhandle9715 7 ปีที่แล้ว

      Reuben Mason Or using the simplified form he came up with makes it easier obviously. Some points would be (0,1) (2,2) (6,3) and (12,4). I assume (0,0) would also be a point from the original function, but I really have no idea now. :)

    • @RanEncounter
      @RanEncounter 7 ปีที่แล้ว +1

      It is a parabola but 90 degree rotated to the right.
      www.wolframalpha.com/input/?i=y%5E2+%3D+x+%2B+y
      EDIT: this is not the integral but the y only.

    • @nabeelshousha9126
      @nabeelshousha9126 6 ปีที่แล้ว

      V. G

    • @JensenPlaysMC
      @JensenPlaysMC 6 ปีที่แล้ว

      @@RanEncounter that graph is wrong. the function of y=root (x+y) continuous but the nested roots isnt continuous around 0. which is why the equation for the plus root breaks( also when graphing dont square it keep the root as by squaring you change the range)

  • @noahzuniga
    @noahzuniga 7 ปีที่แล้ว

    practical application of hilberts hotel, nice!

  • @b.kmathematics8888
    @b.kmathematics8888 4 ปีที่แล้ว

    Thanks sir.

  • @shaherfurany3926
    @shaherfurany3926 6 ปีที่แล้ว +1

    now differentiate it to get the original function , what are you going to do with the 1/2 derived from 1/2x?

  • @grishnakh
    @grishnakh 3 ปีที่แล้ว

    Could we really substitute a part of this infinite sequence? Do we need to check convergence first? Tho I don’t know how to check this kind of sequence

  • @jagdish_aneshwar
    @jagdish_aneshwar 3 ปีที่แล้ว

    What will be the sol for the sqrt of x sqrt of x sqrt of x upto infinity without + symbol

  • @devkinandan5125
    @devkinandan5125 6 ปีที่แล้ว

    Very nice

  • @atomix1093
    @atomix1093 7 ปีที่แล้ว

    Is it possible to write the answer in a similar way as the nested roots?

  • @milos_radovanovic
    @milos_radovanovic 6 ปีที่แล้ว

    What is the valid domain of that primitive function?

  • @Deejaynerate
    @Deejaynerate 2 ปีที่แล้ว

    Fun fact: evaluating that function at x = 1 gives you the golden ratio

  • @JordanMetroidManiac
    @JordanMetroidManiac 7 ปีที่แล้ว

    Every video incites a blue pen controversy...

  • @Anistuffs
    @Anistuffs 6 ปีที่แล้ว

    5:42 However, if you put x=0, using the +ve sign, we get y=1 which is false as y=0. So in that case the -ve sign is correct.
    Because it is a case where 1 > sqrt(4x+1) so the -ve sign for y still gives a positive result.
    So what gives? Why is the answer for y sometimes the +ve sign and sometimes the -ve sign? Can you tell me what's the rule here?

    • @JensenPlaysMC
      @JensenPlaysMC 6 ปีที่แล้ว

      pretty sure its to do with discontinuity at 0

    • @Anistuffs
      @Anistuffs 6 ปีที่แล้ว

      @@JensenPlaysMC Wait, uhm, why is there a discontinuity at 0? The function looks pretty continuous for all non-negative values of x.

    • @JensenPlaysMC
      @JensenPlaysMC 6 ปีที่แล้ว

      @@Anistuffs when you plot the graph it goes from approaching 1 but then when it reaches zero the y coordinate jumps to 0. this is why the function in terms of y doesnt work,( the y function gives 0,0 but with the negative root)

    • @Anistuffs
      @Anistuffs 6 ปีที่แล้ว

      @@JensenPlaysMC ohhhhhhhhhhhhhhhhhh
      ok yeah, I plotted it on desmos and yeah as I add more and more and more roots, the limit to 0 rises up the y axis.
      Thanks.
      Wait, that's bizarre because that would mean sqrt(x+sqrt(x)) should have a discontinuity at 0 but it doesn't
      So when does the discontinuity start appearing?

    • @JensenPlaysMC
      @JensenPlaysMC 6 ปีที่แล้ว

      @@Anistuffs it does have a discontinuity at 0. its called a jumping discontinuity. but that assumes there are infinitely many defining this in closed form only works for x>0

  • @angelmendez-rivera351
    @angelmendez-rivera351 6 ปีที่แล้ว

    I think that anti-differentiating an infinitely nested radical is not a valid manipulation in mathematics regardless of what you do in the process, simply because even when you use limiting sequences, they are typically ill-defined.

  • @leoalbertonavarronavas7574
    @leoalbertonavarronavas7574 4 ปีที่แล้ว +1

    Profesor
    Se podría doblar al español estos super interesantes vídeos de redpen-blackpen
    Seria super por el poco conocimiento de ingles, aunque las demostraciones algoritmicas son barbaras

  • @xoppa09
    @xoppa09 7 ปีที่แล้ว

    If anyone is curious here is a graph of the original radical expression and the closed form quadratic.
    www.desmos.com/calculator/zhacwjrthw
    We see that the expression y= √x + (√x + (√x + ... gets closer to 1/2+ √(4x + 1) /2
    as we nest more radicals

  • @tijis421
    @tijis421 4 ปีที่แล้ว

    Why complete the square if the quadratic formula leads to the same result? It seems arbitrary but was there a reason?

  • @nicholasleclerc1583
    @nicholasleclerc1583 6 ปีที่แล้ว

    5:37
    But you can have:
    y=0.5(1-sqrt(4x+1))
    If:
    x = [0; -0.25]
    So your answer should be:
    0.5x +/- sqrt((4x+1)^3)/12 + c
    For: x = [-0.25; 0]
    And:
    0.5x + sqrt((4x+1)^3)/12 + c
    For: x = [0; +Inf[

  • @purim_sakamoto
    @purim_sakamoto 3 ปีที่แล้ว

    うひひ
    エクセレントですね!

  • @rayzhou8560
    @rayzhou8560 2 ปีที่แล้ว

    If x = 0, y = root(0+root(0+…) = 0, however if y = 0.5(1+root(4x+1)), then when x = 0, y = 1, how do we approach that?

  • @redaabakhti768
    @redaabakhti768 5 ปีที่แล้ว

    thank you very beautiful but do you have any idea how to prove that this sequence converge for every positive x if it converges

    • @redaabakhti768
      @redaabakhti768 5 ปีที่แล้ว

      recursion u_n = sqrt (u_n-1 +x)

  • @damian_smc
    @damian_smc 7 ปีที่แล้ว +2

    1:26 in that case if you square at both sides, shouldn't y^2 be equal to the absolute value of x+y ?

    • @Popotam
      @Popotam 6 ปีที่แล้ว +4

      For the function to be defined, X has to be positive and a square root is always positive, so the sum X+Y is always positive, no need for absolute value here 😊

  • @huascochoqueabelroger7364
    @huascochoqueabelroger7364 7 ปีที่แล้ว +1

    thanks u are really nice : )

  • @salvadorvillarreal1643
    @salvadorvillarreal1643 7 ปีที่แล้ว

    It's funny that the "y" you find in 5:46 has a different domain from the original one... Is the imaginary part of the original one thinking of it as a complex function zero in the interval [-1/4,0) as well? can this be proven without the algebraic substitution?

    • @salvadorvillarreal1643
      @salvadorvillarreal1643 7 ปีที่แล้ว

      although, if you think about it... for x=0 the function SHOULD be zero. with the substitution you got it's in fact 1.