Summing A Very Interesting Infinite Series

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 29

  • @Qermaq
    @Qermaq 17 วันที่ผ่านมา +1

    This was a fun one. Hey, here's a fairly easy one for the holidays: on the first day of Christmas your true love gives to you 1 present a. (n = 1 ==> a) On the second day of Christmas your true love gives to you 2 presents b and 1 present a. (n = 2 ==> 2b + a) On the third day of Christmas your true love gives to you 3 presents c, 2 presents b and 1 present a. (n = 3 ==> 3c + 2b + a) (1) In total, how many presents will your true love give to you on day n? (2) How many presents will your true love have given you in total from days 1 to n?

  • @schwidola3549
    @schwidola3549 18 วันที่ผ่านมา +2

    The second method is a little bit of black magic, because you would have to foresee that deriving would produce an interesting result. Good insight, but the first method is more satisfying, because you realize that you have a nested geometric series, and the very thought of decomposing a sum into other sums is very useful for other problems

  • @robertcotton8481
    @robertcotton8481 17 วันที่ผ่านมา

    I agree with wolframalpha jyst glance thought we were doing fibanochie

  • @bobkurland186
    @bobkurland186 18 วันที่ผ่านมา +1

    I did method 1

  • @scottleung9587
    @scottleung9587 18 วันที่ผ่านมา

    Nice!

    • @SyberMath
      @SyberMath  17 วันที่ผ่านมา +1

      Glad you liked it!

  • @parimalpandya9645
    @parimalpandya9645 18 วันที่ผ่านมา +1

    क्या रामानुजन और महाबलेनियस का हाउस नंबर प्रोब्लम का एक और सुझाव है

  • @dan-florinchereches4892
    @dan-florinchereches4892 18 วันที่ผ่านมา

    I think the sum is i*x^(3i-1) i>=1
    So multiplying by 3 and integrating results in the series
    X^3i geometric series which has
    Sum(1..n) = (1-x^(3n+1))/(1-x^3)
    And infinite sum is 1/(1-x^3) when |x|

  • @dwm1943
    @dwm1943 17 วันที่ผ่านมา

    I did method 1, or do I mean 2? Without the differentiation. Easy, but fun. |x| < 1.

  • @ahmadalizade-h2k
    @ahmadalizade-h2k 18 วันที่ผ่านมา +1

    The second is not true. These equations only hold |x|

  • @davidmitchell3881
    @davidmitchell3881 17 วันที่ผ่านมา

    put x = -1 and the sum is rather interesting 😂

  • @MrGeorge1896
    @MrGeorge1896 18 วันที่ผ่านมา

    x² + 2x⁵ + 3x⁸ + ... = x² ( 1 + 2x³ + 3x⁶ + ...)
    substitute x³ with y: x² ( 1 + 2y + 3y² + ...) but we know the second factor is equal to 1 / (1 - y)²
    x² / (1 - y)² = x² / (1 - x³)² = (x / (1 - x³))²

    • @MohammadElmi
      @MohammadElmi 18 วันที่ผ่านมา

      How do you know the second factor? This is how I calculated it:
      Suppose 1 + 2y + 3y^2 + ... = s. Integrating both sides gives: y + y^2 + y^3 + ... = S (supposing s = dS/dy).
      Using the formula for sum of infinite series: S = y/(1-y). Differentiate and you get: s = 1/(1-y)^2.
      Do you have a simpler method?

    • @MrGeorge1896
      @MrGeorge1896 18 วันที่ผ่านมา

      @@MohammadElmi This series is so common that I consider it as well known. 😀 But we can also derive it as follows:
      (1 + 2y + 3y² +....) = 1 * (1 + y + y² +....) + y * (1 + y + y² +....) + y² * (1 + y + y² +....) +...
      = (1 + y + y² +....) * (1 + y + y² +....)
      = 1 / (1 - y) * 1 / (1 - y)
      = 1 / (1 - y)²

  • @seanfraser3125
    @seanfraser3125 18 วันที่ผ่านมา +1

    (x/(1-x^3))^2

  • @agytjax
    @agytjax 18 วันที่ผ่านมา +1

    Haven't you heard what Shakespeare has said : "It doesn't matter which method came first, it would suck just the same !"😇

    • @FisicTrapella
      @FisicTrapella 18 วันที่ผ่านมา

      Shakespeare said that when he realized the second method came first 😄

    • @forcelifeforce
      @forcelifeforce 18 วันที่ผ่านมา

      Stop spamming your post, you rude *a-hole!*

  • @agytjax
    @agytjax 18 วันที่ผ่านมา +1

    Why does this guy always annoys us with his BS : "I am gonna start with the 2nd method first" 😀😀 ?
    Haven't you heard what Shakespeare has said : "It doesn't matter which method came first, it would suck just the same !"

  • @guyhoghton399
    @guyhoghton399 18 วันที่ผ่านมา

    _Let S = x² + 2x⁵ + 3x⁸ + 4x¹¹ + ..._
    _x³S = x⁵ + 2x⁸ + 3x¹¹ + ...._
    ∴ _S - x³S = x² + x⁵ + x⁸ + x¹¹ + ..._
    ⇒ _(1 - x³)S = x² / (1 - x³) if |x| < 1_
    ⇒ *_S = x² / (1 - x³)²_*

    • @SyberMath
      @SyberMath  17 วันที่ผ่านมา +1

      Pretty good!

  • @guyhoghton399
    @guyhoghton399 18 วันที่ผ่านมา

    This is my second comment, but I've decided to post it first. 🙂

    • @SyberMath
      @SyberMath  17 วันที่ผ่านมา +1

      Haha!
      Noooo, you can’t do that! 🤪😁

    • @guyhoghton399
      @guyhoghton399 17 วันที่ผ่านมา

      @@SyberMath 😀