Deep Learning 59: Fundamentals of Graph Neural Network

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 45

  • @deeps-n5y
    @deeps-n5y 3 ปีที่แล้ว +5

    No BS and straight to the point..
    Thanks for this gem

  • @ryantwemlow1798
    @ryantwemlow1798 20 วันที่ผ่านมา

    This is extremely informative! Thank you for this course.

  • @teetanrobotics5363
    @teetanrobotics5363 4 ปีที่แล้ว +6

    One of the best professors on the planet

  • @shwetaredkar734
    @shwetaredkar734 4 ปีที่แล้ว +6

    Very helpful tutorial. Please include Graph Convolution neural network too. Thanks!

  • @nitishmc6929
    @nitishmc6929 3 ปีที่แล้ว +1

    Great explanation sir....

  • @saikrishnarallabandi9084
    @saikrishnarallabandi9084 4 ปีที่แล้ว +1

    Very very helpful. Thanks a lot!

  • @aproperhooligan5950
    @aproperhooligan5950 2 ปีที่แล้ว

    Excellent knowledge transfer. Thank you.

  • @chandrakishtawal4595
    @chandrakishtawal4595 4 หลายเดือนก่อน

    Very nicely explained 👍

  • @paulnguyen9254
    @paulnguyen9254 4 ปีที่แล้ว +1

    Excellent!

  • @DungPham-ai
    @DungPham-ai 4 ปีที่แล้ว +1

    Great. Hope you make more video about graph deep learning

  • @mosben3700
    @mosben3700 4 ปีที่แล้ว +1

    Nice and clear explanation!, weating the next video especially normalization and propagation rule

  • @yassinetoumi403
    @yassinetoumi403 4 ปีที่แล้ว +2

    thanks , clear explanation we need the implamatation pls to more understanding

  • @MCRuCr
    @MCRuCr 3 ปีที่แล้ว

    First think that came to my mind:
    Neural Nets itself are graphs.
    MINDBLOWN

  • @ssshukla26
    @ssshukla26 3 ปีที่แล้ว +1

    These lectures are fantastic. Thank you so much sir. Just one request there are too much adverts in between and these adverts literally throw my concentration off everytime...

  • @danupongbuttongkum3631
    @danupongbuttongkum3631 4 ปีที่แล้ว +1

    Thank you so much.
    I'll be waiting for the next topic.

  • @Biedropegaz
    @Biedropegaz 4 ปีที่แล้ว +1

    Nice lecutre :-)

  • @marsrover2754
    @marsrover2754 2 ปีที่แล้ว +1

    Great and to the point explanation sir. Can you make more videos from basics to advanced in graph neural network. If you have prepared where can I find the proper playlist on the same.

  • @learnwitharefin3269
    @learnwitharefin3269 3 หลายเดือนก่อน

    thanks sir

  • @ipuhbamrash6708
    @ipuhbamrash6708 4 ปีที่แล้ว

    Nice person. Waiting for more videos.

  • @cybervigilante
    @cybervigilante 3 ปีที่แล้ว +1

    What about graphs that have both directed and undirected edges? What are they called? That's actually quite common - a street network that has some two-way and some one-way streets is both.

  • @cube3483
    @cube3483 4 ปีที่แล้ว +1

    Thank you so much for such a nice tutorial. kindly if you have any tutorial on EBGAN or Energy related GAN please share!!!! much appreciated.

  • @vishalch2038
    @vishalch2038 4 ปีที่แล้ว +1

    Great video sir,
    Can you please explain @15:46 why did you only take self loop for node 1 only and not others ?

  • @beizhou2488
    @beizhou2488 4 ปีที่แล้ว +1

    Could I understand that all the graph neural networks are designed to achieve one sole purpose, which is calculating the node/vertex embedding?

  • @mohamedabbashedjazi493
    @mohamedabbashedjazi493 4 ปีที่แล้ว +3

    Thank you for this great series on GNNs, what do you recommend as a paper to learn more variants of GNNs, I found dozens in the literature and I am confused about which one is the next. Greetings from Algeria.

  • @faizulrakibsayem795
    @faizulrakibsayem795 3 ปีที่แล้ว +1

    Sir, can you make videos on DTW, GMM and HMM?

  • @ankitdsh18
    @ankitdsh18 4 ปีที่แล้ว +1

    Hi sir it will be good if you can provide some problem sets so that we can learn by doing some problems. Thanks

  • @vinayaksharma4200
    @vinayaksharma4200 4 ปีที่แล้ว +1

    Thank you Sir, Can you make a Video on CPVTON, GMM or Face Reconstruction?

  • @asifmian43
    @asifmian43 ปีที่แล้ว

    How 1 and 1 are unique 6:11

  • @omarmahtab6851
    @omarmahtab6851 2 ปีที่แล้ว

    Good video with some verbal mistakes like: unique/different 5:57, the word unique and different means the same . Initially in the first part numbers of nodes were miscalculated. Overall appreciated!

  • @NarasimhaRaoGundavarapu
    @NarasimhaRaoGundavarapu 4 ปีที่แล้ว +3

    Great explanation! Just want to point out that being unique means the same as two or more things being different. I think there some confusion here 6:10.

    • @rohitsrao
      @rohitsrao 4 ปีที่แล้ว +1

      Yes, I think he meant that the labels don't have to be distinct. They can repeat.

  • @shwetaredkar734
    @shwetaredkar734 4 ปีที่แล้ว +1

    When is the next video coming up for this? eagerly waiting.

  • @LayneSadler
    @LayneSadler 4 ปีที่แล้ว +1

    Hmm. How does this not cover message passing and convolution?

  • @kaushikroy4041
    @kaushikroy4041 4 ปีที่แล้ว +5

    This is very useful. But I counted an Ad every 1 minute of watching. This is really frustrating.

    • @dubey_ji
      @dubey_ji 3 ปีที่แล้ว

      looks like he removed ads now but content's worth atleast the ads :p

  • @rakeshsinghrawat99
    @rakeshsinghrawat99 4 ปีที่แล้ว

    Thanks

  • @fairuzshadmanishishir8171
    @fairuzshadmanishishir8171 4 ปีที่แล้ว

    Honey lecture series

  • @sudhirsolanki
    @sudhirsolanki 4 ปีที่แล้ว +1

    My question is not related to this video ..
    Sir , firstly how to create weight file after training the neural network ?
    Second , how we can use this weighted file on our local pc ?
    Plz provide some related link/contant , make video on this....

    • @ShikhaMallick
      @ShikhaMallick 4 ปีที่แล้ว

      You can save model weights using tensorflow function and retrieve the saved weights using load_model function when you need. Please refer tensorflow save_model and load_model functions.

  • @shouvikmajumder6614
    @shouvikmajumder6614 4 ปีที่แล้ว +1

    You say unique but you mean non-unique, right?

  • @patrickbutler2839
    @patrickbutler2839 4 ปีที่แล้ว

    Ridiculous amount of ads thrown into the video

  • @WahranRai
    @WahranRai 2 ปีที่แล้ว +1

    IT IS NOT YET NEURAL NETWORK ! YOU ARE TALKING ABOUT GRAPH THEORY ONLY !!!

  • @Flowereacer89
    @Flowereacer89 3 ปีที่แล้ว

    why are there dislikes on the video ?
    Where do these people come from, what do they need ?

  • @MrArmas555
    @MrArmas555 4 ปีที่แล้ว

    ++