Confounding

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ม.ค. 2025

ความคิดเห็น • 76

  • @brishannahinton650
    @brishannahinton650 9 ปีที่แล้ว +33

    thank you so much for this!!! I just was NOT understanding confounding variables but you made it so easy so thank you sincerely from the bottom of my heart! -a psychology student

  • @katomoon6170
    @katomoon6170 2 ปีที่แล้ว +4

    I think a confounding variable is an extraneous variable (non-treatment) variable which we are not testing in our experiment / study but it (the confounding / extraneous variable) has an effect on the response variable. I will be glad if I'm corrected but that's how I understand this concept.
    Thank you from Uganda East Africa

  • @docrock15
    @docrock15 5 ปีที่แล้ว +101

    Put playback speed at 1.25x
    Thank me later

  • @tsosamph_ches5832
    @tsosamph_ches5832 9 ปีที่แล้ว +6

    Oh my goodness, you take the absolute sting out of epidemiology. Thank you!

  • @KhadijahYeedah
    @KhadijahYeedah 10 หลายเดือนก่อน

    Thank you so much for explaining ❤️❤️ anyone else from 2024 😍??

  • @lisama2748
    @lisama2748 3 ปีที่แล้ว

    Omg I love u after like 8 years... u just saved my test

  • @tomf.7360
    @tomf.7360 10 ปีที่แล้ว +6

    Thank you so much for posting these videos! Very well explained and clear. It will definitely help me doing my Epidemiology exam. ;)

  • @Aadicura_Taniya_Time
    @Aadicura_Taniya_Time ปีที่แล้ว

    Thank you!! Very excellent video

  • @KK-rh6cd
    @KK-rh6cd 3 ปีที่แล้ว +3

    It was great explained, this really helps me to complete my assignment. Thank you for making this video.

  • @sdal4244
    @sdal4244 4 ปีที่แล้ว +2

    Firstly. Thank you Liz for this, you saved my Life.
    Put playback speed at 1.5x
    if you are native speaker.
    Put playback speed at 1.25x
    if English is second language.
    Thank me later

    • @siIverspawn
      @siIverspawn 4 ปีที่แล้ว +1

      I'm not a native speaker. I put it at 1.75x

  • @HeyYall398
    @HeyYall398 2 ปีที่แล้ว

    Excellent 👌👍

  • @tymothylim6550
    @tymothylim6550 3 ปีที่แล้ว +1

    Excellent video! Liked how it's clear regarding the issue of establishing causal relationships! :)

  • @smurfaka
    @smurfaka 7 ปีที่แล้ว +5

    Thanks for a good video. Not sure if the arrow from smoking coronary heart disease should be double though.

    • @rossc8160
      @rossc8160 2 ปีที่แล้ว

      Agreed - coronary heart disease does not cause smoking so it should be a one way arrow. Otherwise this is very good.

  • @panchitoborja
    @panchitoborja 5 ปีที่แล้ว

    Madam you are truly extraordinary! Very well and clearly explained!

  • @servicetothecross8914
    @servicetothecross8914 2 ปีที่แล้ว

    Best explanation ever!!!!! 🤩🤩🤩🤩🤩

  • @estherernest5353
    @estherernest5353 5 ปีที่แล้ว

    At last i came to understand the concept of confounding.. thank you indeed

  • @SoichiHayashi2014
    @SoichiHayashi2014 3 หลายเดือนก่อน

    Hello! Thank you for this video. Everything made sense until the very last example. Earlier, you gave the example of "young age" as confounder, but then you replaced that with blood pressure and all the sudden it is not a confounder. I am failing to see the difference. Why could "age" be a confounder but not "blood pressure"?

  • @jazzyproductions9806
    @jazzyproductions9806 4 ปีที่แล้ว

    I was looking through my playlist from when I was in 2nd-5th grade and I came across this- I’m honestly so confused and concerned

  • @highndreamin
    @highndreamin 2 ปีที่แล้ว

    thank you u are so good at explaining that i understood just with the first example thank you so much

  • @MrGotro1
    @MrGotro1 2 ปีที่แล้ว

    wouldn't age and physical activity be negatively related. As age goes up, physical activity goes down?

  • @Moebik
    @Moebik 4 ปีที่แล้ว +1

    Where were you? I finally find my place to rest. Thank you so much

  • @黄昭-z7w
    @黄昭-z7w 9 ปีที่แล้ว +2

    I am wondering does the present of confounding always mean a spurious association between risk factor and outcome? Is it possible that confounding can also mask the association between them?

    • @ABo-jr8pg
      @ABo-jr8pg 5 ปีที่แล้ว

      It can! It just depends on which relattionships are positive and which ones are negative.

  • @wenkangma4301
    @wenkangma4301 9 ปีที่แล้ว

    Come before my epid exam. Clear and helpful. Thank you!

  • @yvonneurquieta1864
    @yvonneurquieta1864 8 ปีที่แล้ว +1

    Thank you Elizabeth! greatly appreciated! Do you have any videos for Effect modifier by any chance?

  • @asaiasoluna3344
    @asaiasoluna3344 4 ปีที่แล้ว

    how does confounding variable affect the validity of the study?

  • @austina696
    @austina696 ปีที่แล้ว

    Well done

  • @toyinokunuga3605
    @toyinokunuga3605 3 ปีที่แล้ว

    Thank you so much!! That was made so easy to understand xx

  • @hashemfathi1646
    @hashemfathi1646 4 ปีที่แล้ว

    Best explanation ever

  • @yasiralsarraj9235
    @yasiralsarraj9235 9 ปีที่แล้ว

    Super helpful... really appreciate the effort

  • @sabrinayasmin1359
    @sabrinayasmin1359 7 ปีที่แล้ว +1

    Awesome explanation

  • @AnkushSharma-zv5hv
    @AnkushSharma-zv5hv 6 ปีที่แล้ว

    last two examples cleared everything

  • @shortandsweet2767
    @shortandsweet2767 2 ปีที่แล้ว

    Can you explain about blocking variable in statistics, please?

  • @sherinvgeorge6805
    @sherinvgeorge6805 6 ปีที่แล้ว

    Excellent video, thanks..

  • @vivianalomeli2254
    @vivianalomeli2254 4 ปีที่แล้ว

    I WISH you were my professor. Mine is so bland. I like your teaching

  • @persephone1015
    @persephone1015 3 ปีที่แล้ว

    This was amazing, thank you!

  • @archanam5522
    @archanam5522 4 ปีที่แล้ว

    Nice explanation thank you mam

  • @furongli361
    @furongli361 8 ปีที่แล้ว +1

    I am wondering whether those arrow directions are right, in particular to physical activity and age

    • @GradualReportSerbia
      @GradualReportSerbia 7 ปีที่แล้ว

      Looks like there is an error in there

    • @hemoisthebestemo1234
      @hemoisthebestemo1234 6 ปีที่แล้ว

      The arrows are correct. in this example she was saying that’s it’s a negative (inverse) correlation, meaning that the younger you are the less likely you’re getting MI, and the more you engage in physical activity the less likely you’re of getting MI

    • @hemoisthebestemo1234
      @hemoisthebestemo1234 6 ปีที่แล้ว

      The confounding factor is that younger people are more likely to to exercise so it’s hard to tell which of these two is protective from MI

    • @aidangollaglee3531
      @aidangollaglee3531 5 ปีที่แล้ว

      Yeah they were wrong- she drew young age as a mediator. To be a confounder you need arrows pointing from young age to both physical activity and MI

    • @mustafeibrahim-xx1fk
      @mustafeibrahim-xx1fk 2 ปีที่แล้ว

      @@aidangollaglee3531 i agree you right. i was thinking like that.

  • @theobserver5600
    @theobserver5600 5 ปีที่แล้ว

    Best explanation ever! Thank you so much

  • @muwongejosephjunior6131
    @muwongejosephjunior6131 8 ปีที่แล้ว +1

    Thank you, understood it better watching this video

  • @ABo-jr8pg
    @ABo-jr8pg 5 ปีที่แล้ว

    Isn't fluid intake related to blood pressure though?

  • @varsshasangani8699
    @varsshasangani8699 4 ปีที่แล้ว

    Can u explain confounding in handedness

  • @wisamtariq4412
    @wisamtariq4412 6 ปีที่แล้ว

    Great explanation... Many thanks.

  • @omarkhaled9026
    @omarkhaled9026 4 ปีที่แล้ว

    thank you, i hope my doctor teach like you

  • @loneayat1973
    @loneayat1973 6 ปีที่แล้ว

    Thanks mam
    What kind of variable now blood pressure is .....
    Which is caused by during experiment

  • @siddarthramkumar8763
    @siddarthramkumar8763 6 ปีที่แล้ว

    Could it be both?

  • @adityachouhan5589
    @adityachouhan5589 7 ปีที่แล้ว +1

    classic explanation

  • @extramiles3831
    @extramiles3831 9 ปีที่แล้ว +2

    total? partial? and balanced confounding? please :)

  • @jeneseJonEs
    @jeneseJonEs 5 ปีที่แล้ว

    How do I include confounding in a review question?

  • @d7omi111
    @d7omi111 4 ปีที่แล้ว

    thank you, I was about to give up.

  • @zahirraihan2402
    @zahirraihan2402 5 ปีที่แล้ว

    Great!! Helpful. Thanks

  • @multipurpose1530
    @multipurpose1530 ปีที่แล้ว

    Last two examples confused me again . Its not an easy task when you are doing confounding, mediation and interaction simultaneously

  • @v.tunglc
    @v.tunglc ปีที่แล้ว

    clearly explained.

  • @TheProfessor1908
    @TheProfessor1908 6 ปีที่แล้ว

    Awesome! Thanks.

  • @mgmmac
    @mgmmac 3 ปีที่แล้ว

    good vid

  • @youssefnasrallah1660
    @youssefnasrallah1660 4 ปีที่แล้ว

    Thank you a lot . its so helpful

  • @tokfooqueen
    @tokfooqueen ปีที่แล้ว

    thank you

  • @midozakaria7976
    @midozakaria7976 7 ปีที่แล้ว +1

    really merci ...v beutiful videos

  • @imadsaddik
    @imadsaddik 7 หลายเดือนก่อน

    Thanks

  • @zakorato
    @zakorato 9 ปีที่แล้ว

    WTH--i mean look how good you are--thanks alot

  • @samon3065
    @samon3065 8 ปีที่แล้ว

    I'm 68 and planning on competing in the olympics, I see a positive relationship between age and physical activity.

  • @kocur4d
    @kocur4d 6 ปีที่แล้ว

    Association does not imply causation! This is what my statistic book has written down on every page. How come you are throwing this causes this and that causes this all over the place? :)

    • @MelbourneMaster
      @MelbourneMaster 5 ปีที่แล้ว

      These examples are so cut and clear that your argument is basically invalid. But yes sometimes it can be difficult to deem something an association or causation.

  • @bravething2011
    @bravething2011 9 ปีที่แล้ว

    thank you so much :D

  • @sidraashraf4731
    @sidraashraf4731 5 ปีที่แล้ว

    Thanku mam

  • @MelbourneMaster
    @MelbourneMaster 5 ปีที่แล้ว

    Your example with age is throwing me off. Usually age is an effect modifier. Is it because you portrayed age as a dichotemous variable i.e young or not young that it works? Age and physical exercise would be a continuum spectrum where physical activity would drop gradually as age increases, therefore this is a bad example since there is no singular point where you suddenly shift from being young to not being young anymore. Age is almost always an effect modifier in my opinion, as effect modifiers are usually biologically rooted.