What is Agentic RAG?

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 25

  • @nbamastermind
    @nbamastermind 2 วันที่ผ่านมา +1

    Excellent explanations! Simple without additional fluff. Thank you.

  • @norbertschmidt
    @norbertschmidt 23 วันที่ผ่านมา +6

    You make the best LLM + RAG explainers in the world. Thanks so much.

  • @lesmoe524
    @lesmoe524 24 วันที่ผ่านมา +6

    Fantastic description, it seems using agents to help you route to potentially different databases is a game changer, thank you.

  • @sqweepsrussell9412
    @sqweepsrussell9412 24 วันที่ผ่านมา +3

    Thanks for this well explained video. This is the most simplified explanation of agentic rag that sank into my grey matter

  • @jaffarbh
    @jaffarbh 24 วันที่ผ่านมา +1

    Thanks. This is pretty useful and much better than the naïve approach of overloading the model with lot's of irrelevant data from the vector DB.

  • @sjmediaonline
    @sjmediaonline 22 วันที่ผ่านมา +4

    IBM’s main task is now to create the catchup teaching videos. No innovation or breakthroughs are coming out from them. I see so many IBM old timers are watching with amazement how smaller open source innovators are moving lightning fast in GenAI and then they start recording teaching videos… I do not see any new things / new demos coming out from IBM.

  • @Ilovepotatoes-t4t
    @Ilovepotatoes-t4t 17 วันที่ผ่านมา

    thank u!! One question: Do you know how to evaluate an agentic rag? Do I have to take anything into account compared to a normal rag evaluation? (e.g. with RAGAs..) Best regards

  • @sterlingabbot695
    @sterlingabbot695 24 วันที่ผ่านมา +5

    Please do RAG + Big Data next

    • @IBMTechnology
      @IBMTechnology  22 วันที่ผ่านมา +1

      An interesting suggestion, any specific element or question you have about the topic?

  • @StalinDeLaTorre
    @StalinDeLaTorre 24 วันที่ผ่านมา +1

    Where can I learn this approach?

  • @DintlP
    @DintlP 15 วันที่ผ่านมา

    We need to know how to implement agent and what is this? is this another llm to determine the context and route to right db

  • @PriyeshYadav
    @PriyeshYadav 24 วันที่ผ่านมา +1

    So the Agent is also a pretrained LLM with those 2 vector db ???

  • @RohitGulati309
    @RohitGulati309 12 วันที่ผ่านมา

    Im confused ... Andrew Ng says just RAG is Agentic AI. But RAG does not need LLM during the query phase. So what's correct here?

  • @Ijmeisner
    @Ijmeisner 24 วันที่ผ่านมา +1

    In the reflection I think that’s the teleprompter… or maybe I am hallucinating 🤣

  • @hi5wifi-s567
    @hi5wifi-s567 24 วันที่ผ่านมา +1

    “More responsible, more accurate, more adaptable, “
    plus more secure as well?

  • @MikewasG
    @MikewasG 24 วันที่ผ่านมา +1

    What is the difference between this and semantic routing?

    • @IBMTechnology
      @IBMTechnology  21 วันที่ผ่านมา +1

      Semantic routing uses more straightforward methods like cosine similarity and other predefined rules to make the decision on which route to take. The example I drew used an LLM agent, which can understand and interpret more complex/nuanced queries, understand context, but is much heavier (compute and latency) because it is using an LLM.
      -David

  • @AK-be7jh
    @AK-be7jh 24 วันที่ผ่านมา +2

    So the agent will acts like a controller here .

  • @funkfreeze
    @funkfreeze 22 วันที่ผ่านมา

    Overkill for most consumer facing applications and, as the answer to generalist queries, not specific enough a system for internal tooling. Lots of noise introduced here.

  • @marcomaiocchi5808
    @marcomaiocchi5808 24 วันที่ผ่านมา +7

    This pipeline doesnt make a lot of sense.

    • @JustinKahrs
      @JustinKahrs 10 วันที่ผ่านมา

      skill issue

    • @scycer
      @scycer 2 วันที่ผ่านมา

      Got a particular question?
      A standard rag pipeline just takes your question convert it into a vector and searches the data source to find content that is similar to it.
      By adding an agent in front of it, the question can be interpreted to figure out which data sources should be used to fetch that content.
      It's like the difference between asking a single book a question or asking a question to a librarian who can find the right book for you before looking into the book for the answer to that question.
      Its hard with all the unique fancy naming they give these architectures, it abstracts the simplicity of what is really happening underneath.

  • @amotorcyclerider3230
    @amotorcyclerider3230 24 วันที่ผ่านมา +3

    Jesus. He did not even say how the agent uses the llm to select the right data source. He did not even say how agent is implemented. So incomplete.. this video is incomplete. Delete and present with a complete one.

    • @StMarkAdebayo
      @StMarkAdebayo 23 วันที่ผ่านมา +6

      Make your own

    • @dougmintz2943
      @dougmintz2943 4 วันที่ผ่านมา

      Might want to clarify your first word in the context of this discussion.