China Math Olympiad Problem | A Very Nice Geometry Challenge | 2 Methods

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น •

  • @holyshit922
    @holyshit922 10 หลายเดือนก่อน +1

    My approach
    Measures of angles in triangle ADB
    Angle DBA = 3theta
    Angle DAB = 90-2theta
    Angle ADB = 90 - theta
    From sine rule in ADB
    (x-y)/sin(3theta) = y/sin(90-theta)
    (x-y)/y = sin(3theta)/cos(theta)
    Express sin(3theta)/cos(theta) in terms of tan(theta)
    From triangle ABC we know that
    tan(2theta) = y/x
    x/y - 1 = sin(3theta)/cos(theta)
    x/y - 1 = 1/tan(2theta) - 1
    After comparing these two results we will get quartic equation easy to solve
    but only tan(theta) = 2 - sqrt(3) will be valid solution
    so theta = 15

  • @The-IndianOven
    @The-IndianOven 10 หลายเดือนก่อน +2

    Very nice solution ❤

  • @TheAlavini
    @TheAlavini 5 หลายเดือนก่อน +1

    Both solutions are nice. The second one is amazing. Congrats

    • @MathBooster
      @MathBooster  5 หลายเดือนก่อน

      Thank you 🙂

  • @MARÍAot-m6f
    @MARÍAot-m6f 10 หลายเดือนก่อน

    In The 3rd method you construct a triangle CBE that has an angle 2 theta. ¿When do you conclude that EC contains D ?

    • @MARÍAot-m6f
      @MARÍAot-m6f 10 หลายเดือนก่อน

      You make a symmetry respect BH orthogonal to AC and you will obtained a vertex E that fulfills the conditions.

  • @ai2657
    @ai2657 9 หลายเดือนก่อน

    2√2cos(theta) =[tan(theta) -1]/tan(theta)

  • @MarieAnne.
    @MarieAnne. 9 หลายเดือนก่อน

    In △ABC, ∠C = 2θ, ∠B = 90 → ∠A = 90−2θ
    In △ABC, tan(2θ) = y/x → *x/y* = cot(2θ) = *cos(2θ)/sin(2θ)*
    In △ABD, ∠A = 90−2θ, ∠B = 3θ → ∠D = 90−θ
    Using law of sines in △ABD we get:
    AD/sin(∠B) = AB/sin(∠D)
    AD/AB = sin(∠B)/sin(∠D)
    (x−y)/y = sin(3θ)/sin(90−θ)
    x/y − 1 = sin(3θ)/cosθ
    cos(2θ)/sin(2θ) − 1 = sin(3θ)/cosθ
    cos(2θ) − sin(2θ) = sin(3θ) sin(2θ)/cosθ = sin(3θ) * 2 sinθ cosθ / cosθ
    cos(2θ) − sin(2θ) = 2 sin(3θ) cosθ
    Using product-to-sum identity, we get:
    cos(2θ) − sin(2θ) = cos(2θ) − cos(4θ)
    sin(2θ) = cos(4θ)
    sin(2θ) = 1 − 2 sin²(2θ)
    2 sin²(2θ) + sin(2θ) − 1 = 0
    (sin(2θ) + 1) (sin(2θ) − 1) = 0
    2θ = −1 or 1/2
    Since 2θ is an acute angle (it is a non-right angle of right triangle), then 0 < 2θ < 1
    *sin(2θ) = 1/2 → 2θ = 30° → θ = 15°*

  • @shriramr3820
    @shriramr3820 10 หลายเดือนก่อน

    Is BD perpendicular to AC?

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 หลายเดือนก่อน

    Dai teorema dei seni risulta (sin3θ/cosθ)+1=ctg2θ..dopo le semplificazioni(θ=-45non è accettabile)risulta(tgθ)^2-4tgθ+1=0..tgθ=2+√3,θ=75(??)...tgθ=2-√3,θ=15(ok)

    • @holyshit922
      @holyshit922 10 หลายเดือนก่อน

      I used the same approach but i desribed it more exactly and took me longer
      Although we used the same method i solved it independently
      Our approach is easier than presented on the video but some people may like his solutions
      In fact his first method is not so difficult to get
      His second method is focused on isosceles triangles and is more difficult then first method
      because we do not see at the first sight why we should look for isosceles triangles

    • @giuseppemalaguti435
      @giuseppemalaguti435 10 หลายเดือนก่อน

      ​​@@holyshit922x/cosT=t/sin2T... y/cosT=t/cos2T.. Divido le 2 equazioni x/y=ctg2T.. Inoltre y/cosT=(x-y) /sin3T.( x-y) /y=sin3T/cosT=x/y-1...quindi ctg2T=1+sin3T/cosT..this is the final equation.. My approach is, perhaps, not very simple.. But for me, is natural

  • @manojkantsamal4945
    @manojkantsamal4945 10 หลายเดือนก่อน

    Thita =15 degree, may be

  • @DugRut
    @DugRut 9 หลายเดือนก่อน

    this was painful to watch