Series (1+1/n)^n, test for divergence

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ม.ค. 2025

ความคิดเห็น • 35

  • @eratzleretour1027
    @eratzleretour1027 7 ปีที่แล้ว +38

    The terms you sum don't even tend to zero they're greater than 1. Even if it were to the power n^2. The end.

    • @orangeguy5463
      @orangeguy5463 7 ปีที่แล้ว +10

      Correct. The first test for divergence should always be to see if the terms approach 0 as n increases. If they don't, then all other tests will be inconclusive or tedious to prove that it diverges.

  • @lucasargandona4658
    @lucasargandona4658 4 ปีที่แล้ว +5

    I love how you have so many questions that appear on my home work!

  • @7288637
    @7288637 7 ปีที่แล้ว +10

    actually you can show this using the root test. if the sequence converges to 1, but strictly from above, the series diverges en.wikipedia.org/wiki/Root_test

  • @helloitsme7553
    @helloitsme7553 7 ปีที่แล้ว +2

    The fact that it grows bigger, even if it's a tiny bit tells us it's divergent. Let's say y = (1+1/x)^x. Then at x=5 for example, you get a value let's call it z . now because it's growing it will have a bigger value than z+z+z+z+z+z and so on. z+z+z+z and so on is divergent so it's divergent for sure

  • @mariomario-ih6mn
    @mariomario-ih6mn 5 ปีที่แล้ว +8

    At 0:45 I knew the root test would't work because you said TRY the root test.

  • @MenkoDany
    @MenkoDany 5 ปีที่แล้ว +3

    This is why you use the TFD first!

  • @lenaorellana7506
    @lenaorellana7506 3 ปีที่แล้ว

    Thank you very much for the explanation, greetings from Argentina

  • @rootx2369
    @rootx2369 3 หลายเดือนก่อน

    what happens if we multiply a^n to the (1+(1/n))^n where a>0

  • @pavuluriseshu6426
    @pavuluriseshu6426 7 ปีที่แล้ว +3

    I think we can also use binomial expansion to prove this

  • @nanotw2089
    @nanotw2089 5 ปีที่แล้ว +6

    What about (1 - 1/n)^n ?
    I changed the plus to a minus. Does it also diverge by TFD?

    • @lily_littleangel
      @lily_littleangel 4 ปีที่แล้ว

      According to the fact n->inf (1+a/n)^(bn) = e^ab. Here a=-1 and b=1 (plug those in you get (1+-1/n)^n, therefore that equals to e^-1 = 1/e != 0, so it diverges by the test for divergence.

  • @ahmetenesacar2326
    @ahmetenesacar2326 2 ปีที่แล้ว

    Teach I didn't get why we didn't use integral test 'cause if we say y=(1+1/n)^n and take ln of both sides we get -3n^2 and that is going to infinity and we proove that it diverges

  • @Koisheep
    @Koisheep 6 ปีที่แล้ว +1

    I'm one of those who try to solve the question before playing the video and I just noticed that (1+1/n)^n is greater than 1^n, which is 1 since n > 0. I think it's called the comparaison theorem, but it's a fact (I think more widespread in math than other degrees) that any series S greater than a series T that goes to +infinity is divergent (smaller if T goes to -infinity).
    In this case, S is the series from the problem and T is the series 1+1+1+1+1... which is also known as the limit when n goes to infinity of n itself.

  • @inshaneupane5626
    @inshaneupane5626 4 ปีที่แล้ว +1

    what if there is (1-1/n)^n^2?

  • @Whodey3489
    @Whodey3489 2 ปีที่แล้ว

    Thank you so much, this really helped me!

  • @balthazarbeutelwolf9097
    @balthazarbeutelwolf9097 6 ปีที่แล้ว +3

    While technically correct, this is nonsense - this is clearly already divergent if you remove the +1/n part. It makes more sense to make this argument with (1-1/n)^n. Then the summands converge to 1/e.

  • @weerman44
    @weerman44 7 ปีที่แล้ว +4

    Awesome! Love your explanations!

  • @woody7480
    @woody7480 ปีที่แล้ว

    Thank you very much sir ❤❤❤❤❤

  • @aaliaank4478
    @aaliaank4478 7 ปีที่แล้ว +4

    Great Work Keep it up!!!

  • @marzmartinez8386
    @marzmartinez8386 4 ปีที่แล้ว

    So basically the TFD is the same as the nth term test?

  • @robinleckey
    @robinleckey 6 ปีที่แล้ว +1

    What if you take that and multiply by 1/5^n?

  • @vasupotnuru6206
    @vasupotnuru6206 6 ปีที่แล้ว +6

    Your smile is very nice...... very beautiful.....very awesome.....

  • @hk2845
    @hk2845 6 ปีที่แล้ว +2

    It converges to a real number e.

    • @sinarzaito1106
      @sinarzaito1106 6 ปีที่แล้ว +1

      The sum diverges

    • @astra9802
      @astra9802 5 ปีที่แล้ว +3

      (1+¹/n)ⁿ as n approaches infinity equals e. Since e≠0, the series diverges.

  • @fountainovaphilosopher8112
    @fountainovaphilosopher8112 7 ปีที่แล้ว +1

    For me it's obvious that it diverges even without the TFD. Like I'm only 14, I barely know how does it work, yet I still can conclude right away that it diverges

  • @Ania.H.L
    @Ania.H.L 5 ปีที่แล้ว +1

    Incredible

  • @AbhishekThakur-lp7ez
    @AbhishekThakur-lp7ez 5 ปีที่แล้ว +1

    Master

  • @felipefuenzalida2499
    @felipefuenzalida2499 3 ปีที่แล้ว

    Español excelente