Laurent Series of Complex Functions

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 93

  • @jasonsummers7644
    @jasonsummers7644 6 ปีที่แล้ว +11

    i find videos like this usually have the person taking their time writing out a lot of the information that we've already registered, yours is a great exception, great video

  • @xavierf4987
    @xavierf4987 6 ปีที่แล้ว +27

    Amazing Man! We need professors that explain things like you do! It really enlightened me! Thanks!
    Greetings from Portugal!

    • @aidenavi5976
      @aidenavi5976 3 ปีที่แล้ว

      I know Im randomly asking but does any of you know a trick to get back into an Instagram account??
      I was dumb lost my password. I would love any assistance you can give me

    • @mosesdominic9827
      @mosesdominic9827 3 ปีที่แล้ว

      @Aiden Avi Instablaster :)

    • @aidenavi5976
      @aidenavi5976 3 ปีที่แล้ว

      @Moses Dominic i really appreciate your reply. I got to the site through google and Im in the hacking process now.
      I see it takes quite some time so I will reply here later when my account password hopefully is recovered.

    • @aidenavi5976
      @aidenavi5976 3 ปีที่แล้ว

      @Moses Dominic it did the trick and I actually got access to my account again. Im so happy!
      Thanks so much, you saved my account !

    • @mosesdominic9827
      @mosesdominic9827 3 ปีที่แล้ว

      @Aiden Avi Happy to help :)

  • @melontusk7358
    @melontusk7358 2 ปีที่แล้ว

    This channel is a life saver

  • @fiseticamente
    @fiseticamente 8 ปีที่แล้ว +7

    Really really good explanation, the recap at 4:37 is enlighting!
    I appreciate a lot your work and the philosophy behind it...
    For now i can only pay you back with a lot of gratitude :D

    • @FacultyofKhan
      @FacultyofKhan  8 ปีที่แล้ว +1

      Thank you! Glad you found it useful!

  • @wanjapaulsen797
    @wanjapaulsen797 8 ปีที่แล้ว +43

    Straight to the point! Great video :)

    • @Unexpectedthings007
      @Unexpectedthings007 4 ปีที่แล้ว

      @@Smoothcurveup52 lesbian🤣

    • @mlg-allallong5491
      @mlg-allallong5491 4 ปีที่แล้ว

      means straight to the G pole (G = Gravitational) {BLACK HOLES}{NULLity}{DOESNT HAVE ANY VALUE BUT HAVE ONLY HUMAN FEELINGS}

  • @rachkim9608
    @rachkim9608 5 ปีที่แล้ว +2

    these videos are gonna save my grade thank you so much

  • @thomasblackwell9507
    @thomasblackwell9507 5 ปีที่แล้ว +18

    I took this 30 years ago at a university and I didn’t get as much out of it as I have with your explanations.

    • @trevorsimpson8788
      @trevorsimpson8788 4 ปีที่แล้ว

      Same here, 1989 to be exact. University of London (Goldsmiths' College)

    • @Calculus99
      @Calculus99 4 ปีที่แล้ว

      That is because ∄ internet in those times to supplement you guys.

  • @hiZarki
    @hiZarki 6 ปีที่แล้ว +8

    Thank you so much for making these videos!! I wish you had more

  • @abhimanyuyadav2685
    @abhimanyuyadav2685 7 ปีที่แล้ว +6

    Great Playlist.. crisp and concise :)

  • @vyacheslavkervezee8938
    @vyacheslavkervezee8938 7 ปีที่แล้ว +1

    wow direct and to the point. Great work mate

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว

      Thank you! Glad you liked it!

  • @techgeek87
    @techgeek87 5 ปีที่แล้ว

    Sir your explanation is very intuitive .

  • @allanramos7201
    @allanramos7201 8 ปีที่แล้ว +3

    Thank you so very much! Very clear explanation!

    • @FacultyofKhan
      @FacultyofKhan  8 ปีที่แล้ว +1

      No problem! Glad you liked it!

  • @prsngfr
    @prsngfr 5 ปีที่แล้ว +2

    3 years later and this video is still helping people like me!

  • @rodolfostevenvillasenornav1072
    @rodolfostevenvillasenornav1072 4 ปีที่แล้ว

    Thank you so much, i've to present a problem like the first example tomorrow and you really help me.
    My problem was f(z) = [Cos(1/z)]/(z^3)

  • @junhuiyang3967
    @junhuiyang3967 5 ปีที่แล้ว +1

    Great video!
    One question (in 6:12): you mentioned that the order of pole z = -1 is 3 because we can't find (z+1)^-4 in the Laurent series expanded around z = -1, but I don't really get this.
    Consider f(z)=1/z(z+1), then the order of pole z = -1 is 1. Now consider z such that |z+1| > 1, then the Laurent series around -1 in this case would be the sum of (z+1)^-n for n >= 2. Then the coefficients of bn's with n >= 2 in the 'b-series' are all non-zero.
    The aforementioned f(z) agrees with what you said in the video for z with 0 < |z+1| < 1 though. In this case the Laurent series is the sum of -(z+1)^n for n >= -1.

  • @Smoothcurveup52
    @Smoothcurveup52 6 ปีที่แล้ว +2

    Wow outstanding explaination

  • @Orion2773
    @Orion2773 7 ปีที่แล้ว +1

    Outstanding explanation, thank you

  • @Zumerjud
    @Zumerjud 2 ปีที่แล้ว

    Thank you for this great explanation!

  • @kartikkalia01
    @kartikkalia01 4 ปีที่แล้ว

    That's just amazing explanation.

  • @abcdef2069
    @abcdef2069 8 ปีที่แล้ว +2

    if the real function i am working on is too difficult, but i am only interested in a small area, then i can use the taylor expansion on that point a, expand it with the 1st order, ignore the 2nd order unless i go far out, so i can change a difficult function to an easy function only around point a. but what can you do with the laurant series? i need some visual representation of the priciple part that can be replaced for an approximation

  • @syeddaniyalali7788
    @syeddaniyalali7788 8 ปีที่แล้ว +4

    This was extremely well explained. However, I was wondering if in the beginning of the video maybe it would be helpful to give the viewer a summary of what to expect in the rest of the video. :) This is just a personal preference though. It helps me figure out whether the video will be useful for what I am looking for or not.
    Anyways, keep it up. :D

    • @FacultyofKhan
      @FacultyofKhan  8 ปีที่แล้ว +4

      Thank you! And I will keep your feedback in mind for future videos!

  • @shobhitdubey1370
    @shobhitdubey1370 8 ปีที่แล้ว

    thanks sir your writing is too clear so i can understand it very easly

    • @FacultyofKhan
      @FacultyofKhan  8 ปีที่แล้ว

      Thank you! Glad you liked it!

  • @benburghes3588
    @benburghes3588 2 ปีที่แล้ว

    Why are you better than my lecturer

  • @madalinam7137
    @madalinam7137 3 ปีที่แล้ว

    What is the meaning of the "zero of order n" in the case you denoted ii) at 4:38 ? Thank you!

    • @Zumerjud
      @Zumerjud 2 ปีที่แล้ว

      I also have a question about this. He said "below" but did he mean "above"?

  • @info-hub457
    @info-hub457 ปีที่แล้ว

    Sir can you please tell me what use these expansions have in physics. I dont understand their significance in physics. I can do some math to solve questions but i dont know what they represent

  • @orchi413
    @orchi413 4 ปีที่แล้ว

    This is was so helpful! thanks!

  • @Terieni-q7c
    @Terieni-q7c 7 ปีที่แล้ว +3

    Thank you so much sir for the video.
    One question: What happens if I want to make a 'Laurent series' around z0 when z0 is not actually a point of singularity?
    Is Laurent series expansion defined only for points around poles? or is it possible to make one around points that are not poles?

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว +8

      No problem! I believe that you can expand a Laurent series about a point where the function is not singular. Remember that a Laurent series is just a generalized Taylor series, so when the function is not singular about a particular point, all the coefficients of the 'b-series' would be zero and you'd just have the Taylor series portion (the analytic part in 1:42) left.

  • @luccalus
    @luccalus 3 ปีที่แล้ว

    Great Explanation. thanks

  • @alial3802
    @alial3802 4 ปีที่แล้ว

    How to get the coefficients of the principle part please?

  • @juanelchacho6475
    @juanelchacho6475 3 ปีที่แล้ว

    you got yourself me as fan.

  • @nightingale2628
    @nightingale2628 4 ปีที่แล้ว

    Good explanation! Thanks.

  • @rickmiles4928
    @rickmiles4928 5 ปีที่แล้ว +2

    Thank you!

  • @laukikbnakhwa9496
    @laukikbnakhwa9496 3 ปีที่แล้ว

    thanks , got the concept !

  • @Bl1tzkr13g
    @Bl1tzkr13g 4 ปีที่แล้ว

    Thanks alot! Great video!

  • @harry77943
    @harry77943 7 ปีที่แล้ว +1

    perfect explanation, sir is there a textbook you can recommend for complex analysis II at this level

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว +1

      Look up the one by Churchill; I use that for my lectures sometimes. And thank you for the kind words!

  • @selvams7061
    @selvams7061 7 ปีที่แล้ว +1

    which book best for complex variables???? . pls reply me sir..

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว +2

      Complex Variables by Churchill is a good one. I suggest giving it a try.

    • @selvams7061
      @selvams7061 7 ปีที่แล้ว +1

      tq

  • @sebcalvo5925
    @sebcalvo5925 7 ปีที่แล้ว +1

    Hey man, your video is really helping me out with this problem i have.
    I just got have a follow up question. For c. i), Suppose i know z0 is a pole of order n of f, how can i show that b sub -n does not equal 0 while all b sub -n-1 to b sub -infinity equal 0?

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว

      Thank you for the kind feedback!
      As for your question, what you can do is multiply f(z) by (z-z0)^n. Then, you can take the limit as z -> z0 of (z-z0)^n * f(z). If you get a finite number, then z0 is a pole of order n. If you get a zero, then the order of the pole z0 is less than n, and if you get infinity, then the order of the pole is greater than n. I use a similar diagnostic test in this video, except in this case, I test whether z0 is a simple pole (i.e. n = 1): th-cam.com/video/sSj7z-pz-yY/w-d-xo.html
      Go to 6:52 for the relevant part. Hope that helps!

  • @subramaniannk3650
    @subramaniannk3650 7 ปีที่แล้ว +1

    Sir, wonderful video.
    But, i don't understand how the last example is related to Laurent series because i believe you could find the pole and its order without the knowledge of Laurent series.
    Any help in clarifying is appreciated!

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว +5

      Thank you! You are correct in that you could find the pole and its order for the last example without knowing about Laurent series. Still, I did this example to illustrate the concept of poles and pole order and how you would go about finding them in a simple case. The Laurent series might still be useful when finding the residues with respect to the points 8, 2, and -1, even though there are alternate ways of finding those residues. Hope that helps!

  • @johannatholen6168
    @johannatholen6168 6 ปีที่แล้ว

    Hey, you said you were gonna prove the theorem for us. Where do I find the proof?

    • @FacultyofKhan
      @FacultyofKhan  6 ปีที่แล้ว +1

      For Laurent's theorem, I haven't posted a proof (I don't think I mentioned that I would prove it though). I've posted a proof for the Residue Theorem in my next video though.

    • @johannatholen6168
      @johannatholen6168 6 ปีที่แล้ว

      Okey, maybe I heard will instead of won't in the video.

  • @petraakbari846
    @petraakbari846 ปีที่แล้ว

    Thank you so much!

  • @ziqizhang1925
    @ziqizhang1925 6 ปีที่แล้ว +1

    God it's so clear

  • @AG-pm3tc
    @AG-pm3tc 2 ปีที่แล้ว

    i have a small problem with understanding why is it valid to use a taylor series when we are trying to express the laurent series.
    anyway, a great video as always.

  • @irtazaalikhan2006
    @irtazaalikhan2006 6 ปีที่แล้ว

    how can we find the Laurent series of e^(1/z^2)

    • @mrfladoodl
      @mrfladoodl 5 ปีที่แล้ว

      Use the definition of power series of e^x and substitute x by 1/z^2

  • @dd100-ns
    @dd100-ns 4 ปีที่แล้ว

    Love it!

  • @NicolasSchmidMusic
    @NicolasSchmidMusic 4 ปีที่แล้ว +1

    Thank you for this serie of videos, they really help me. I would have liked you to explain where the formula for these coefficeints comes from, I've been struggeling for a few days trying to understand it. I fully understand the cauchy integral formula, and I know it's somehow derived from it, but I can't find the connexion.
    edit: I found a nice proof here math.stackexchange.com/questions/1126321/proof-of-laurent-series-co-efficients-in-complex-residue

  • @mingdonghe9169
    @mingdonghe9169 3 ปีที่แล้ว

    Amazing !!!!

  • @VinothKumar-qo7ry
    @VinothKumar-qo7ry 4 ปีที่แล้ว

    Thank you sir

  • @lookmath4974
    @lookmath4974 6 ปีที่แล้ว

    Good video, but I believe you should've said Real Taylor Series because the coefficients in the Complex Taylor Series are also given by contour integrals. There's not really a difference there.

  • @azfarahsan
    @azfarahsan 3 ปีที่แล้ว

    thank you

  • @pokpikchan
    @pokpikchan 6 ปีที่แล้ว

    আপনাকে অসংখ্য ধন্যবাদ

  • @lucasm4299
    @lucasm4299 7 ปีที่แล้ว

    I finished Calc BC, when do I study this?
    So Laurent Series is a Taylor Series with complex arguments?

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว +3

      You'll probably study this in the second year of university. This will be part of a course called Complex Variables. Yes, a Laurent series is a Taylor series for complex functions, but it also allows you to include singularities in its terms. A Taylor series only has the 'analytic part' I mention, while a Laurent series has both the 'analytic' and 'principal' part. Hope that helps!

  • @mariakhan7174
    @mariakhan7174 3 ปีที่แล้ว

    Sir ap kia انگریز han jo English ma btaty ha urdu ma bta dia kary

  • @gallergaller9889
    @gallergaller9889 5 ปีที่แล้ว

    I feel like everybody who watch this understand it immediately. I don't

  • @shandyverdyo7688
    @shandyverdyo7688 5 ปีที่แล้ว

    Excuse me, wait.
    How do you pronounce "laurent?"

    • @knivesoutcatchdamouse2137
      @knivesoutcatchdamouse2137 5 ปีที่แล้ว +1

      'Laurent' in this case is pronounced phonetically as "Loh-ron" or "Loh-rawn" - the man, Laurent, that this theorem is named after, was French, and in French the vowel combination 'au' is (almost always) pronounced as "oh", the 'en' is usually pronounced like "on", and a 't' appearing at the end of a word is often silent, as is the case for the name Laurent in French.

  • @soravsingh8500
    @soravsingh8500 5 ปีที่แล้ว

  • @mohammodhossain9419
    @mohammodhossain9419 7 ปีที่แล้ว

    It would be better for everyone if you made an app for your videos

    • @FacultyofKhan
      @FacultyofKhan  7 ปีที่แล้ว

      Potentially, but I don't have much (read:any) experience in making apps. Perhaps someone could suggest an easy way?

    • @scitwi9164
      @scitwi9164 7 ปีที่แล้ว

      There is an app already: it's called a web browser :q

  • @akr357-o5u
    @akr357-o5u 6 ปีที่แล้ว +1

    Worst lecture of the series. You don't explain what is isolated similarity ? what does it mean by coefficients above the index n ? what do you mean by above and below ? Explain. Explain.

  • @donaldpaul4950
    @donaldpaul4950 4 ปีที่แล้ว +1

    bj...hehe

  • @vibhavsalelkar874
    @vibhavsalelkar874 7 ปีที่แล้ว +2

    :-)

  • @joliverkozlowski
    @joliverkozlowski 5 ปีที่แล้ว

    legal

  • @amaljeevk3950
    @amaljeevk3950 ปีที่แล้ว