Introduction to the Method of Moments Estimator

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ก.พ. 2025

ความคิดเห็น • 15

  • @averysnyder4794
    @averysnyder4794 ปีที่แล้ว +2

    Thank you for explaining it so well! Very intuitive format

    • @mathadamspiegler6463
      @mathadamspiegler6463  ปีที่แล้ว

      Thanks for the feedback and glad you found it helpful! Always nice to know people out there are benefiting.

  • @ahmadmiro23
    @ahmadmiro23 2 ปีที่แล้ว

    many many thanks for the pure and easy explanation and examples

  • @hamshihamsu5461
    @hamshihamsu5461 2 ปีที่แล้ว +1

    Thank you ❤️

  • @shaunlorenztan8129
    @shaunlorenztan8129 2 ปีที่แล้ว

    note to self: moments = statistical variales that can be determined. you also need to review the formulas for the expenctation valeus for univariate data

  • @soroushsoltani919
    @soroushsoltani919 ปีที่แล้ว

    it was fabulous 😊❤❤🎉

  • @SamuelLee-gw6wr
    @SamuelLee-gw6wr 2 ปีที่แล้ว

    Thank you so much! You saved my assignment!

  • @muhdhilmi924
    @muhdhilmi924 11 หลายเดือนก่อน

    Why delta up to infinity is used?

    • @mathadamspiegler6463
      @mathadamspiegler6463  10 หลายเดือนก่อน

      For this distribution, the parameter lambda and delta both are greater than 0. There is no upper bound on the possible values of the parameters. We just know they must be positive.

  • @jasonli7547
    @jasonli7547 ปีที่แล้ว

    The 2nd moment in your demonstration is wrong: it should be ( (3-5)^2 + (4-5)^2 + (5-5)^2 + (8-5)^2) / 4

    • @mathadamspiegler6463
      @mathadamspiegler6463  ปีที่แล้ว

      The second sample moment is defined as M_2 = sum (x_i^2) / n. which is correct in the video. The second sample moment here is (3^2 + 4^2 + 5^2 + 8^2) / 4

    • @mathadamspiegler6463
      @mathadamspiegler6463  ปีที่แล้ว

      You are confusing the second sample moment with the population variance maybe? The variance would be a calculation such as the one you have. The kth sample moment is defined as the sum if the x_i raised to the kth power divided by the sample,