Multivariable Optimization with Boundaries

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ธ.ค. 2024

ความคิดเห็น • 52

  • @devashishshah9021
    @devashishshah9021 3 ปีที่แล้ว +37

    Please keep creating such great playlists..... very helpful while all of us study from home

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +5

      Thank you I will!

  • @coltonlemasters
    @coltonlemasters ปีที่แล้ว +4

    I'm a TA for a multivariable calculus class and your videos are the best refreshers! Thank you!!

  • @konstantinakalimeri3650
    @konstantinakalimeri3650 4 ปีที่แล้ว +13

    I really appreciate your videos. I have recently discovered your channel and it has helped me a lot. I’m going to take my calculus III and differential geometry exams in a few days. Keep up the good work!! Greetings from Greece 🇬🇷

  • @youssefdirani
    @youssefdirani 2 ปีที่แล้ว +2

    Smooth smooth smooth. Just fantastic

  • @CartwheelPig
    @CartwheelPig 4 ปีที่แล้ว +15

    Thank you so much for these videos, they're a huge help!!!!

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +1

      So glad they are helping!

  • @ankuryuvraj6117
    @ankuryuvraj6117 2 ปีที่แล้ว

    Thank you from India 🇮🇳🙏❤.
    I cleared my doubt.

  • @declanallan885
    @declanallan885 2 ปีที่แล้ว +1

    awesome video dude, honestly, clearer explanation then my uni lecturers [Newcastle University Aus; The quality of education at this institution is horrible though admittedly, we have the WORST teachers, they basically don't have teaching skills and are so out of touch with reality/industry it's a joke!]
    Anyhow, thank you youtube teacher who is better then some of the guys i have paid thousands to over the years to!

  • @kennethkau2332
    @kennethkau2332 2 ปีที่แล้ว

    You are the goddamn best Dr. Bazett.

  • @giorgostarnaras5658
    @giorgostarnaras5658 2 ปีที่แล้ว +1

    Nice there's actually a third method that's good for more complicated functions/boundaries.

  • @markburton6182
    @markburton6182 2 ปีที่แล้ว +2

    Finally, a professor with diction!

  • @zheka47
    @zheka47 2 ปีที่แล้ว +1

    You are awesome! Very clear explanations

  • @avinavkashyap8802
    @avinavkashyap8802 2 ปีที่แล้ว +1

    Nicely explained

  • @tillfriesewinkel5770
    @tillfriesewinkel5770 3 ปีที่แล้ว +1

    First of all, thanks a lot for this superb series! Not trying to be a smart ass, but I would like to understand:
    a) At ~14:30 you talked about global maximum/minimum. Was that a mispronounciation, did you mean global in terms of "global on R", or did I get something wrong?
    b) What about the case where f(x, y, ...) = c (some constant value)? I *guess* that then we also have the case of f_xx * f_yy - f_xy^2 = 0, and would like to know if that is true, and how that is function is considered inside a fixed region?

  • @bilalnaseem7830
    @bilalnaseem7830 4 ปีที่แล้ว +2

    Hi how do you make these 3d graphs?

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว +1

    awesome super great explanation , great content!

  • @sandeshkumarchandrakar1622
    @sandeshkumarchandrakar1622 3 ปีที่แล้ว +1

    good work keep going ahead

  • @sergiolucas38
    @sergiolucas38 2 ปีที่แล้ว +1

    excellent video, very important subject :)

    • @DrTrefor
      @DrTrefor  2 ปีที่แล้ว +1

      Glad it was helpful!

  • @hubenbu
    @hubenbu 2 ปีที่แล้ว

    Great visualization!
    imao, the solution presented is on the closed region x^2 +y^2 = 1, which is a hollow cylinder, not on the solid cylinder x^2 +y^2

  • @stevehof
    @stevehof 4 ปีที่แล้ว +1

    Amazing, as always

  • @christopherrosson2400
    @christopherrosson2400 3 ปีที่แล้ว +2

    how does it clean up to 1+cos^2-sin at 8:08 ?

    • @anguskappa5637
      @anguskappa5637 3 ปีที่แล้ว +2

      using identities on the sin^2 term. 1-cos^2(theta)

    • @AAMMTECH
      @AAMMTECH 2 ปีที่แล้ว

      Basically, you separate the two cos^2(theta) and one of them you use it to simplify cos^2(theta) + sin^2(theta) = 1. So,
      cos^2(theta) + [cos^2(theta) + sin^2(theta)] - sin(theta)
      = cos^2(theta) + [1] - sin(theta)

  • @richlovepherodin2050
    @richlovepherodin2050 2 ปีที่แล้ว +1

    You earned a sub.

  • @atirmahmood7058
    @atirmahmood7058 ปีที่แล้ว

    If I choose substitution instead of parametrization then will I have to substitute once y in terms of x and solve it and then x in terms of y and solve this also please reply to this doubt of mine and if not both then why.

  • @avinavkashyap8802
    @avinavkashyap8802 2 ปีที่แล้ว +1

    Plzzz make videos on probability and statistics also

  • @KonstantinA.-bb8rt
    @KonstantinA.-bb8rt 7 หลายเดือนก่อน +1

    If I use the second method (i.e. take df/dy after substituting 1-y^2 for x^2), I will only find the Maxima with y = -1/2. The nothing points at x = 0 don't show up. Do they just fall out of the computation depending on which parametrization you choose and nothing points like these can just come up from to time?
    Thanks a lot for your videos, very concise, they allow me to understand what I just memorized before!

    • @rafaelcalderon5272
      @rafaelcalderon5272 4 หลายเดือนก่อน +1

      Hi I had this same problem, but one thing I tried was substituting 1-x^2 for y^2 as well, which led me to x=0 and x=+-sqrt(3)/2. Perhaps you have to do both substitutions to find all solutions, but I am not sure.

  • @sandrashappell6754
    @sandrashappell6754 ปีที่แล้ว

    What program are you using for your beautiful graphs

  • @kartikshrivastava582
    @kartikshrivastava582 4 ปีที่แล้ว

    Nicely explained !!

  • @avinavkashyap8802
    @avinavkashyap8802 2 ปีที่แล้ว +1

    Really appreciated

  • @yatooosenpaaii9771
    @yatooosenpaaii9771 3 ปีที่แล้ว +2

    Omg thank you u saved me lotssss>< My professor sucks TT

  • @lucieneyvrard5414
    @lucieneyvrard5414 3 ปีที่แล้ว +1

    Amazing content as usual !
    Very clear and unbelievably helpful !
    However anyone could help me to get this clearer ? I understand until the equation sin(theta)= -1/2
    After that where does this triangle come from ?! And how did he solve it after that ?
    Cheers
    Pardon my french

    • @anubhavbhura13
      @anubhavbhura13 3 ปีที่แล้ว +1

      The triangle he draws is from sin(theta)=1/2, not -1/2. If you know basic high school trigonometry you can easily solve sin(theta)=1/2.
      To solve for sin(theta)=-1/2, you need to know how sine acts in all 4 quadrants, using the definition of radians and unit circle. The graph he draws for sin comes from these 4 quadrant sine values. you can either see from that graph, or you can use rules for different quadrants, such as sin(theta)=-1/2 corresponds to sin(pi - theta)=1/2. this gives pi - theta = pi/6, hence theta = 7pi/6.
      These are the rules of inverse trigonometric functions, the fact that different trigonometric functions may be negative or positive in different quadrants requires that we have several tools to bring these angles back to our first quadrant (from which you may infer that values theta only goes from 0 to pi/2).
      Ill leave the other value of 11pi/6 up to you to calculate, because inverse trigonometry is very unpleasant to me!!

  • @joaomattos9271
    @joaomattos9271 ปีที่แล้ว

    Excellent!

  • @Dollygehan012
    @Dollygehan012 2 ปีที่แล้ว

    sir, what is local maxima and local minima

  • @avinavkashyap8802
    @avinavkashyap8802 2 ปีที่แล้ว +1

    Ty very much

  • @HosRo4161
    @HosRo4161 ปีที่แล้ว

    Thank you!

  • @sureshkeerthi9820
    @sureshkeerthi9820 ปีที่แล้ว

    Thank you

  • @AbjSir
    @AbjSir ปีที่แล้ว

    Thanks sir

  • @lenag3329
    @lenag3329 4 ปีที่แล้ว +1

    thank u!

  • @copernicus6420
    @copernicus6420 4 หลายเดือนก่อน

    Maxima and minima

  • @SHAHHUSSAIN
    @SHAHHUSSAIN 4 ปีที่แล้ว

    Matchless

  • @AbdulBari-kl9fs
    @AbdulBari-kl9fs 4 ปีที่แล้ว +2

    Nice shirt

  • @darkdelphin834
    @darkdelphin834 ปีที่แล้ว

    I thought this was langrange multipliers

    • @ES-qe1nh
      @ES-qe1nh ปีที่แล้ว

      That's a level constraint usually

  • @samueldarenskiy6893
    @samueldarenskiy6893 7 หลายเดือนก่อน

    global minimum is at (0,1/2), he forgot that point