Can you find Area of the Yellow triangle? | (Two right triangles) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ก.พ. 2025
  • Learn how to find the area of the Yellow triangle. Important Geometry and Algebra skills are also explained: area of the triangle formula; similar triangles; Pythagorean Theorem; right triangles. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find Area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find Area of the Yellow triangle? | (Two right triangles) |#math #maths #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindArea #YellowTriangleArea #SimilarTriangles #CongruentTriangles #PythagoreanTheorem #RightTriangles #Triangle #AreaOfSquare #AreaOfTriangle #CircleTheorem #GeometryMath #EquilateralTriangle #PerpendicularBisectorTheorem
    #MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles #CongruentTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    Andy Math
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the Radius
    Equilateral Triangle
    Pythagorean Theorem
    Area of a circle
    Area of the sector
    Right triangles
    Radius
    Circle
    Quarter circle
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

ความคิดเห็น • 50

  • @laxmikatta1774
    @laxmikatta1774 10 หลายเดือนก่อน +8

    It's an awesome solution from
    Another awesome professor..
    .....
    ❤ ❤
    😊

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Glad to hear that!
      Thanks dear❤

  • @jimlocke9320
    @jimlocke9320 10 หลายเดือนก่อน +6

    ΔABE and ΔCDE are similar by angle-angle (

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @syamasundararao3149
    @syamasundararao3149 9 หลายเดือนก่อน

    Truely exciting mixture of algebra and geometry concepts. ❤

  • @hongningsuen1348
    @hongningsuen1348 10 หลายเดือนก่อน +3

    1. For single unknown x, only 1 equation is needed for its solution.
    The equation is provided by the common hypotenuse of the 2 right-angled triangles using
    Pythagoras theorem.
    x is found to be 7.
    Hence AB = 5, CD = 2, AD = 11 and BC = 10.
    2. To find area of yellow triangle, area-base side ratio for equal height triangles is the obvious
    method when the areas of the 2 right-angled triangles can be easily calculated. Hence knowing
    AE, ED, BE, EC is crucial. 4 equations are needed to solve these 4 unknowns.
    With the derived lengths of AD = 11 and BC = 10, and side ratio of similarity triangles AEB and
    CED (similarity confirmed by AAA) provided by AB/CD = 5/2. Four equations can be set up:
    (1) AE + ED = 11
    (2) BE + EC = 10
    (3) AE/CE = 5/2
    (4) BE/DE = 5/2
    For clarity, let AE = a, BE = b, CE = c, DE = d.
    The 4 equations are:
    (1) a + d = 11 (2) b + c = 10 (3) a/c = 5/2 (4) b/d = 5/2
    Add (1) & (2) a + c + b + d = 21
    Substitue a for c and b for d using (3) c = (2/5) a and (4) d = (2/5) b
    a + (2/5)a + b + (2/5)b = 21
    a + b = 15
    Substitute d for b using (4) b = (5/2) d
    a + (5/2)d = 15
    d = (2/5)(15 - a)
    From (1) d = 11 - a
    Hence (11 - a) = (2/5)(15 - a)
    a = 25/3
    3.For equal height triangles ACE and ACD, their base side ratio AE:AD = a: 11 = (25/3):11
    = their area ratio
    As area of ACD = (2 x 11)/2 = 11
    Hence area of ACE = [(25/3)/11] x 11 = 25/3.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @redfinance3403
    @redfinance3403 10 หลายเดือนก่อน +2

    I got the solution with similar triangles but only after a long while, the other method is quite ugly but once you’ve gotten the value of x and the perpendicular heights of the triangles to AC, you can use coordinate geometry and find the intersection of the lines, giving you the value for the height and then find the area using bh/2. Really good problem! 👍

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Glad to hear that!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 10 หลายเดือนก่อน +2

    (x-2)²+(x+3)²=(x-5)²+(2x-3)² 2x²+2x+13=5x²-22x+34   3x²-24x+21=0
    x²-8x+7=0     (x-1)(x-7)=0 x=1 is rejected , x=7
    AB=5 CD=2 BE=10 AD=11
    ⊿ABE∞⊿CDE ⊿ABE=25s ⊿CDE=4s △AEC=x
    ⊿ABC=5*10/2=25 ⊿CDA=2*11/2=11
    25s+x=25 4s+x=11 21s=14 s=2/3 x=25/3
    x=△AEC=Yellow triangle area : 25/3

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 10 หลายเดือนก่อน +3

    Let AC=a
    (x-2)^2+(x+3)^2=a^2
    (2x-3)^2+(x-5)^2=a^2
    x^2-4x+4+x^2+6x+9=4x^2-12x+9+x^2-10x+25
    2x^2+2x+13=5x^2-22x+34
    5x^2-22x+34-2x^2-2x-13=0
    3x^2-24x+21=0
    x^2-8x+7=0
    (x-1)(x-7)=0
    So x=7
    area of the yellow triangle=1/2(11)(2)-1/2(2)(2.67)=8.33 square units.❤❤❤ Thanks.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 หลายเดือนก่อน +2

    I began just as you did, I found x = 7 and AC = 5.sqrt(5)
    Then I noticed that triangles EDC and EBA are similar (proportion 5/2). I notes a = ED, then EC = sqrt(a^2 +4) in triangle EDC
    10 = BE + EC = (5/2).a + sqrt(a^2 +4) gives that a = 8/3. At that point I have every side length.
    AE = 25/3, EC = 10/2 and AC = 5.sqrt(5) and I finished with the Heron formula with p = (5/6).(7 +3.sqrt(5)) the half perimeter.
    I found the area of triangle AEC = 25/3. My solution is longer than yours.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 10 หลายเดือนก่อน +1

    Thank you!

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      You are very welcome!
      Thanks ❤️

  • @quigonkenny
    @quigonkenny 10 หลายเดือนก่อน +3

    (x-2)² + (x+3)² = (2x-3)² + (x-5)²
    (x²-4x+4) + (x²+6x+9) = (4x²-12x+9)+(x²-10x+25)
    2x² + 2x + 13 = 5x² - 22x + 34
    3x² - 24x + 21 = 0
    x² - 8x + 7 = 0
    (x-7)(x-1) = 0
    x = 7 | x = 1 ❌ AB < 0
    AB = (7) - 2 = 5
    BC = (7) + 3 = 10
    AD = 2(7) - 3 = 11
    DC = (7) - 5 = 2
    CA =√(5²+10²) = √125 = 5√5
    Draw EF, where F is a point on CA where EF is perpendicular to CA. By SAS, ∆EFA is similar to ∆ADC and ∆CFE is similar to ∆ABC. Let CF = y.
    EF/FA = DC/AD
    EF/(5√5-y) = 2/11
    EF = (2/11)(5√5-y) ----[1]
    FE/CF = AB/BC
    FE/y = 5/10 = 1/2
    FE = y/2 ----[2]
    (2/11)(5√5-y) = y/2
    10√5/11 - 2y/11 = y/2
    10√5/11 = y/2 + 2y/11 = (11y+4y)/22
    15y/22 = 10√5/11
    y = (10√5/11)(22/15) = 4√5/3
    FE = (4√5/3)/2 = 2√5/3
    A = bh = 5√5(2√5/3)/2 = 25/3

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @robertlynch7520
    @robertlynch7520 10 หลายเดือนก่อน +1

    I like your method! However, as I've done in the past, I like to try the “intersecting line functions” method. It really isn't much different in terms of work.
    Define a few short variables
    [1.1]  𝒉 … the height of the '2' sided △
    [1.2]  𝒚 … the height of the '5' sided △
    [1.3]  𝒒 … the bit in from the margin of the 𝒉 vertical
    [1.4]  𝒎 … the bit in from the margin of the 𝒚 vertical
    [1.5]  𝒃 … the base of the whole thing
    [1.6]  𝒙 … the point along 𝒃 where the two △ cross
    [1.7]  𝒛 … the height of that crossing
    Since it makes no difference whether one solves it 'right-side-up' or 'upside down', I chose to flip it over.
    In any case,
    [2.1]  𝒃 = √(125)
    [2.2]  𝒃 = 5√5
    [2.3]  𝒃 = 11.18
    Y'all might not remember it, but worth remembering are the 'height of a right triangle internally' formulæ.
    [3.1]  𝒎 = 5² / 𝒃 ... short-side * short-side divided by hypotenuse
    [3.2]  𝒎 = 5 × 5 ÷ 5√5
    [3.3]  𝒎 = 5 / √5
    [3.4]  𝒎 = 5 × √5 / √5²
    [3.5]  𝒎 = √5
    [3.6]  𝒎 = 2.2361
    [4.1]  𝒚 = 5 × 10 / 𝒃
    [4.2]  𝒚 = 5 × 2 × 5 ÷ 5√5
    [4.3]  𝒚 = 2√5
    [4.4]  𝒚 = 4.4721
    [5.1]  𝒒 = 2²/5√5
    [5.2]  𝒒 = 4 ÷ 5√5
    [5.3]  𝒒 = 0.35777
    [6.1]  𝒉 = (2 × 11)/5√5
    [6.2]  𝒉 = 1.9677
    Then, from these, defining the linear functions of the hypotenuses
    [7.1]  g(𝒙) = 𝒚𝒙 / (𝒃 - 𝒎) ⊕ 0
    [7.2]  f(𝒙) = -𝒉𝒙 / (𝒃 - 𝒒) + ( 𝒉𝒃 / (𝒃 - 𝒒) )
    Set those 2 equal to each other and determine what 𝒙 is
    [8.1]  𝒙 = 2.9814 … and of course plugging into [7.1]
    [8.2]  g(𝒙) = 1.4907
    Well, now the area is kind of obvious
    [9.1]  Area = ½ base height
    [9.2]  Area = ½ 𝒃 g(𝒙)
    [9.3]  Area = 8.333333 ( which is 25⁄3 )
    YAY? Completely different route, but produces satisfactory results directly. Very little geometry required.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Glad to hear that!
      Thanks for sharing ❤️

  • @spafon7799
    @spafon7799 9 หลายเดือนก่อน

    I did it slightly differently. I solved for x and AC the same way as in the video. To get the area of ACE I used the areas of the two right trianges ABC and ADC.
    The areas of the triangles follow these equations:
    ABC=ABE+AEC =25 (1)
    ADC=DEC+AEC=11 (2)
    We note that ABE and EDC are similar triangles. Furthermore, segment DC is the side of EDC that corresponds to segment AB of triangle ABE.
    We know that DC=2 and AB=5. Thus the area of triangle DEC will be the square of the ratio of these sides compared to the area of triangle ABE.
    Thus, in terms of areas, DEC=(4/25)*ABE.
    So we modify equation 2 to get
    ADC=(4/25)*ABE+AEC = 11
    or
    ABE+(25/4)AEC=(25/4)*11=275/4 (2a)
    Now take equation (2a)-(1)
    we get (21/4)*AEC=275/4-25=275/4-100/4=175/4
    thus 21*AEC=175
    AEC=175/21= 25/3

  • @ybodoN
    @ybodoN 10 หลายเดือนก่อน +2

    Since we are dealing with two right triangles whose hypotenuse is in common, we can write the system of equation (x − 2)² + (x + 3)² = (2x − 3)² + (x − 5)² leading to 3x² − 24x + 21 = 0 and the solutions x = 1 or x = 7.
    Since 2x − 3 or x − 5 would be negative with x = 1, we must discard it. So we are left with x = 7 which gives AB = 3, BC = 10, AD = 11 and CD = 2. Then AC = 5√5, sin (CAD) = 2/5√5 and sin (ACB) = 5/5√5 = 1/√5.
    Now we are dealing with an ASA triangle. So the sinus of the third angle (AEC) is 3/5 and AE = 25/3 and CE = 10/3. Therefore the area of the yellow triangle is ½ (25/3) (10/3) (3/5) = 750/90 = 25/3 square units.
    Thank you PreMath! 🙏

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Excellent!
      You are very welcome!
      Thanks for sharing ❤️

  • @Skyflag4
    @Skyflag4 10 หลายเดือนก่อน

    Hi, thank you for this great question and answer of it. I solved it with similitary of ABE and CDE triangles after I found x by using pythagorean relation between ABC and ADC triangels. I thought it would be so easier with this method

  • @hongningsuen1348
    @hongningsuen1348 10 หลายเดือนก่อน

    For finding height of triangle AEC, I would like to suggest a method to avoid using similar triangles which are prone to mistakes when constructing corresponding sides proportionality equations. Let angle CAD be A and angle BCA be B and height be h.
    From the found values of the sides, tanA = 2/11 and tanB = 5/10. AC = 5(sqrt 5) = h/tanA + h/tanB = 11h/2 + 10h/5 = 75h/10. Hence h = (2/3)(sqrt 5).

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 หลายเดือนก่อน

    One interesting question could be added: What is the length BD?
    Answer: We use the Ptolemy theorem as ABCD is in the circle of diameter[A,C]: We have AD.BC = AB.CD + AC.BD. So 11.10 = 5.2 + 5.sqrt(5).BD
    We have then that BD = 100/(5.sqrt(5) = 20/sqrt(5) = 4.sqrt(5).

  • @maxwellarregui814
    @maxwellarregui814 10 หลายเดือนก่อน

    Buenas tardes Sres. PreMath. Gracias por este interesante problema geométrico. Tengo una inquietud y necesito su valiosa opinión. Con las medidas obtenidas he construido la gráfica, pero noto que no se aprecian los ángulos rectos B y D = 90 grados. agradeciéndole la atención que se digne en prestarme. Éxitos.

  • @unknownidentity2846
    @unknownidentity2846 10 หลายเดือนก่อน +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The triangles ABC and ACD are both right triangles, so we can apply the Pythagorean theorem for both of them:
    AC² = AB² + BC² ∧ AC² = AD² + CD² ⇒ AB² + BC² = AD² + CD²
    (x − 2)² + (x + 3)² = (2*x − 3)² + (x − 5)²
    x² − 4*x + 4 + x² + 6*x + 9 = 4x² − 12*x + 9 + x² − 10*x + 25
    0 = 3x² − 24*x + 21
    0 = x² − 8*x + 7
    0 = (x − 7)*(x − 1)
    ⇒ x = 7
    ∨ x = 1
    For x=1 not all side lenghts are positive, so the only useful solution is:
    x = 7:
    AB = x − 2 = 7 − 2 = 5
    AD = 2*x − 3 = 2*7 − 3 = 11
    BC = x + 3 = 7 + 3 = 10
    CD = x − 5 = 7 − 5 = 2
    AC² = AB² + BC² = 5² + 10² = 25 + 100 = 125 ⇒ AC = √125 = 5√5
    Now let's add the point F on AC such that AEF and CEF are both right triangles. In this case the triangles AEF and ACD are similar and the triangles CEF and ABC are similar as well. So we can conclude:
    EF/AF = CD/AD = 2/11
    EF/CF = AB/BC = 5/10 = 1/2
    (EF/AF)/(EF/CF) = (2/11)/(1/2)
    (EF/AF)*(CF/EF) = (2/11)*(2/1)
    CF/AF = 4/11
    ⇒ CF = (4/11)*AF
    AC = AF + CF = AF + (4/11)*AF = (15/11)*AF
    ⇒ AF = (11/15)*AC
    ⇒ EF = (2/11)*AF = (2/11)*(11/15)*AC = (2/15)*AC
    Therefore the area of the yellow right triangle turns out to be:
    A(ACD) = (1/2)*AC*h(AC) = (1/2)*AC*EF = (1/2)*AC*(2/15)*AC = AC²/15 = 125/15 = 25/3
    Best regards from Germany

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @andreasproteus1465
    @andreasproteus1465 10 หลายเดือนก่อน +1

    No need to find AC or h.
    A,B,C,D are points of a circle. So use the chord theorem to find BE (or DE) and then subtract the areas of two right triangles.

    • @ybodoN
      @ybodoN 10 หลายเดือนก่อน +1

      It works! Simply set the following system of equations: {ab = cd, a + b = 11, c + d = 10, 5² + c² = a² or 2² + b² = d²}.
      Solutions: a = 125/7, b = −48/7, c = 120/7, d = −50/7 (rejected) or a = 28/3, b = 8/3, c = 20/3, d = 10/3 (accepted).

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks for sharing ❤️

  • @rakeshkumarrkk5498
    @rakeshkumarrkk5498 10 หลายเดือนก่อน +2

    Sir solve √(5-x)= 5-x^2 😊😊😊

    • @ybodoN
      @ybodoN 10 หลายเดือนก่อน +2

      5 − x = (5 − x²)²
      5 − x = 25 − 10x² + x⁴
      x⁴ − 10x² + x + 20 = 0
      x = ½ (1 − √17), x = ½ (√21 − 1)

    • @rakeshkumarrkk5498
      @rakeshkumarrkk5498 10 หลายเดือนก่อน +2

      How u find the roots would u clarify

    • @ybodoN
      @ybodoN 10 หลายเดือนก่อน

      ​@@rakeshkumarrkk5498 Very simply: I used an equation solver... hence the mistakes in my quartic equation (now corrected) 😉
      Manually, since we are dealing with a Double Multiplicity-2 (DM2) case, I would start by splitting it into (x² − x − 4) (x² + x − 5) = 0

  • @wackojacko3962
    @wackojacko3962 10 หลายเดือนก่อน +2

    @ 14:18 isolation of h could lead to depression and cognitive decline. ...not in this case though! 🙂

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      😀
      Thanks ❤️

  • @DB-lg5sq
    @DB-lg5sq 10 หลายเดือนก่อน

    شكرا لكم على المجهودات
    Pythagore 2 fois ...x=7
    EAB et ECD semblables
    S(EAB)=m^2S(ECD)
    m=CD/AB=2/5
    S(ABE)+S(ACE)=25
    S(CDE)+S(ACE)=11
    S(ABE)=50/3
    S(ACE)=25/3

  • @bbhrdzaz
    @bbhrdzaz 10 หลายเดือนก่อน +1

    guess I'm going back to Pre PreMath

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      No worries! 😀
      Thanks ❤️

  • @montynorth3009
    @montynorth3009 10 หลายเดือนก่อน

    Once x is calculated to be 7.
    Tan BCA = 5/10, BCA = 26.565 degrees.
    Tan DAC = 2/11, DAC = 10.305 degrees.
    AC^2 = 5^2 + 10^2 = 125.
    AC = 11.18.
    Angle AEC = 180 - 26.565 - 10.305 degrees.
    AEC = 143.13 degrees.
    Sine Law.
    11.18/sin143.13 = EC/sin10.305.
    EC = 11.18 x sin10.305/sin143.13.
    EC = 3.33.
    Area yellow = 1/2 x 3.33 x 5.
    8.33.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 10 หลายเดือนก่อน +1

    I divided this Problem in two Major Parts:
    A) Easy Part
    B) Difficult Part
    Let's go adventuring!!
    A) Easy Part
    1) Quest for X. X must be bigger than 2; X > 2
    2) AC^2 = (X - 2)^2 + (X + 3)^2
    3) AC^2 = (2X - 3)^2 + (X - 5)^2
    4) AC^2 = AC^2; so:
    5) (X - 2)^2 + (X + 3)^2 = (2X - 3)^2 + (X - 5)^2
    6) Two Solutions : X = 1 and X = 7
    7) The only Possible Solution is X = 7
    8) AC^2 = 25 + 100 = 125
    9) AC^2 = 121 + 4 = 125
    10) AC = sqrt(125) = 5*sqrt(5)
    B) Difficult Part
    1) tan CAD = 2/11
    2) tan ACB = 5/10 = 1/2
    Using Analytic Geometry we have two Lines: Line AD and Line BC; and we want to find the Point of Interception by a System of Two Linear Equations with Two Unknowns.
    3) Y = - 2X/11
    4) Y = X/2 + sqrt(125)/2
    5) As: Y = Y
    6) - 2X/11 = X/2 + sqrt(125)/2
    7) One Solution : X = - (11*sqrt(5)) / 3
    9) Y = - 2X/11
    10) Y = - 2 * [ - (11*sqrt(5)) / 3] / 11 ; Y = 22*sqrt(5)) / 33 ; Y = 2*sqrt(5)/3 Y ~ 1,4907
    11) Base = 5*sqrt(5)
    12) height = 2*sqrt(5)/3
    13) Area = (Base * height) / 2
    14) 2A = [5*sqrt(5)] * [2*sqrt(5)/3] ; 2A = (10*5) / 3 ; 2A = 50/3 ; A= 50/6 ; A = 25/3 ; A ~ 8,333(3)
    15) So, my answer is that the Yellow Triangle Area is equal to 25/3 Square Units, or equal to approx. 8,333 Square Units.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 10 หลายเดือนก่อน

    My way of solution ▶
    ΔABC is a right triangle with the hypotenuse AC
    ΔADC is a right triangle with the hypotenuse AC
    if we write the Pythagorean theorem for ΔABC, we get:
    AB= x-2
    BC= x+3
    AB²+BC²= CA²
    (x-2)²+(x+3)²= CA²
    if we write the Pythagorean theorem for ΔADC, we get:
    AD= 2x-3
    DC= x-5
    AD²+DC²= CA²
    (2x-3)²+(x-5)²= CA²
    while CA² is same in both eqautions:
    (x-2)²+(x+3)²= (2x-3)²+(x-5)²
    x²-4x+4+x²+6x+9= 4x²-12x+9+x²-10x+25
    2x²+2x+13= 5x²-22x+34
    3x²-24x+21=0
    divided by 3 we get:
    x²-8x+7=0
    Δ= 64-4*1+7
    Δ= 64-28
    Δ= 36
    √Δ= 6
    x₁= (8+6)/2
    x₁= 7
    x₂= (8-6)/2
    x₂= 1
    AB= x-2
    if we put x= 1
    AB= -1 < 0 ❗

    x= 7
    AB= 5
    BC= 10
    AD= 11
    DC= 2
    ∠(BEA)= ∠(DEC) = α
    if α+ β= 90°
    ∠(EAB)= ∠ (ECD)= β
    so, ΔABE ~ ΔCDE both triangles are similar:
    BE/ED = EA/CE= AB/DC
    AD= 11
    EA=y
    ED= 11-y
    BC= 10
    BE= z
    CE= 10-z

    z/11-y= 5/2= y/10-z
    2y= 50-5z
    2y+5z=50
    2z= 55-5y
    5y+2z= 55
    10y+25z= 250
    -10y-4z= -110
    21z= 140
    z= 140/21
    z= 20/3
    y= 25/3
    Ayellow= A(ΔABC) - A(ΔABE)
    Ayellow= (AB*BC)/2 - (AB*BE)/2´
    Ayellow= (5*10)/2 - (5*20/3)/2
    Ayellow= 25- (50/3)
    Ayellow= 25/3 square units ✔

  • @professorrogeriocesar
    @professorrogeriocesar 10 หลายเดือนก่อน

    legal, sistema.