👍 x+10 > 0 and x^2- 10 > 0 For given solutions x+10 = ( 21+√41)/2 , (21- √41)/2 , (19+√37)/2 , (19 - √37)/2 all are positive now x^2 -10 = (1+√41)/2 , (1 - √41)/2 , (- 1 - √37)/2 , (-1+√37)/2 only first and last are positive hence there are only two solutions (1+√41)/2 and - (1+√37)/2
Great video
I love this équation
3:17 There’s not (x+sqrt(x+10)+1)
There’s (x-sqrt(x+10)+1)
X^2-10=Sqrt[X+10] X=(-1-Sqrt[37])/2=-0.5-0.5Sqrt[37] X=(1+Sqrt[41])/2=0.5+0.5Sqrt[41]
Amazing! Thanks a lot!
Y=Sqrt(X+10), Y^2=X+10, X^2-10=Y,Y^2+Y=X^2+X,(X-Y)(X+Y+1)=0,
👍
x+10 > 0 and x^2- 10 > 0
For given solutions
x+10 = ( 21+√41)/2 , (21- √41)/2 , (19+√37)/2 , (19 - √37)/2
all are positive
now x^2 -10 = (1+√41)/2 , (1 - √41)/2 , (- 1 - √37)/2 , (-1+√37)/2
only first and last are positive
hence there are only two solutions
(1+√41)/2 and - (1+√37)/2
🗿👍