- 94
- 20 627
The Evil Math Cat
Portugal
เข้าร่วมเมื่อ 24 ก.พ. 2022
I do Math videos
ResNet50 Explained
In this video you will learn what is a CNN and what is ResNet-50
Full Video here: th-cam.com/video/UndJuc6EYX0/w-d-xo.html
Subscribe!: www.youtube.com/@theevilmathcat?sub_confirmation=1
Support me on Patreon: www.patreon.com/EvilMathCat
GitHub Code for GATE: github.com/theevilmathcat/gate
Full Video here: th-cam.com/video/UndJuc6EYX0/w-d-xo.html
Subscribe!: www.youtube.com/@theevilmathcat?sub_confirmation=1
Support me on Patreon: www.patreon.com/EvilMathCat
GitHub Code for GATE: github.com/theevilmathcat/gate
มุมมอง: 426
วีดีโอ
Machine Learning Let's Build a Classification Model
มุมมอง 492 หลายเดือนก่อน
How to Build a Face Recognition System using Machine Learning. Subscribe!: www.youtube.com/@theevilmathcat?sub_confirmation=1 Support me on Patreon: www.patreon.com/EvilMathCat GitHub Code for GATE: github.com/theevilmathcat/gate
Chat GPT o1 Review. Does it live to all the hype?
มุมมอง 3372 หลายเดือนก่อน
Open AI GPT o1 Review. Does it live to all the hype? Subscribe!
Data Science FULL COURSE 5H: Let's build a Chess Cheating Model
มุมมอง 1773 หลายเดือนก่อน
@chessbrah @chess @GMHikaru @GothamChess @csqpod @themagnuscarlsen Full Data Science Course on Cheating Detection Analysis, using Stockfish, Python and DataLens. I analyzed all games from Hikaru Nakamura, Fabiano Caruana and Magnus Carlsen to see if Kramnik's cheating claims are statistically valid or not. I used Python, Stockfish and DataLens. The results will shock you. Links: New Course: evi...
Data Science FULL COURSE 5H: Did GM Hikaru Nakamura Cheat?
มุมมอง 7163 หลายเดือนก่อน
@GMHikaru @GothamChess @csqpod @themagnuscarlsen @chessbrah @chess I analyzed all games from Hikaru Nakamura, Fabiano Caruana and Magnus Carlsen to see if Kramnik's claims are statistically valid or not. I used Python, Stockfish and DataLens. The results will shock you. Links: New Course: evilmathcat.com/ email: evilmathcat@yandex.com PART 2: TH-cam Video showing how the project was done: th-ca...
Advanced Multivariate Statistics Introduction
มุมมอง 3614 หลายเดือนก่อน
This is an Introduction to Multivariate Statistics for Data Scientists/ML Practitioners Subscribe! Links: New Course: evilmathcat.com/
Machine Learning Model FULL COURSE 3H: Let's Build a Banknote Authentication Model
มุมมอง 3.9K4 หลายเดือนก่อน
In this 3H course, we will build a fully working Machine Learning Classification Model, that Authenticates Banknotes. Links: New Course: evilmathcat.com/ GitHub: github.com/theevilmathcat/banknote-classifier UCI: archive.ics.uci.edu/dataset/267/banknote authentication SUBSCRIBE! www.youtube.com/@theevilmathcat?sub_confirmation=1
Inferential Statistics Course: #1 Introduction
มุมมอง 575 หลายเดือนก่อน
Inferential Statistics Course: #1 Introduction
Inferential Statistics Course: #2 What is the purpose of statistics
มุมมอง 165 หลายเดือนก่อน
Inferential Statistics Course: #2 What is the purpose of statistics
Inferential Statistics Course: #3 Population vs sample
มุมมอง 185 หลายเดือนก่อน
Inferential Statistics Course: #3 Population vs sample
Inferential Statistics Course: #4 Inferential Approaches Estimation
มุมมอง 105 หลายเดือนก่อน
Inferential Statistics Course: #4 Inferential Approaches Estimation
Inferential Statistics Course: #5 Inferential Approaches Hypothesis Testing
มุมมอง 95 หลายเดือนก่อน
Inferential Statistics Course: #5 Inferential Approaches Hypothesis Testing
Inferential Statistics Course: #6 Population parameters
มุมมอง 105 หลายเดือนก่อน
Inferential Statistics Course: #6 Population parameters
Inferential Statistics Course: #7 data types
มุมมอง 45 หลายเดือนก่อน
Inferential Statistics Course: #7 data types
Inferential Statistics Course: #8 Experiments Events and Independence
มุมมอง 55 หลายเดือนก่อน
Inferential Statistics Course: #8 Experiments Events and Independence
Inferential Statistics Course: #9 Distributions
มุมมอง 95 หลายเดือนก่อน
Inferential Statistics Course: #9 Distributions
Inferential Statistics Course: #10 Binomial and Bernoulli
มุมมอง 85 หลายเดือนก่อน
Inferential Statistics Course: #10 Binomial and Bernoulli
Inferential Statistics Course: #11 Negative Binomial And Geometric Distribution
มุมมอง 95 หลายเดือนก่อน
Inferential Statistics Course: #11 Negative Binomial And Geometric Distribution
Inferential Statistics Course: #12 Poisson Distribution
มุมมอง 115 หลายเดือนก่อน
Inferential Statistics Course: #12 Poisson Distribution
Inferential Statistics Course: #13 Exponential Distribution
มุมมอง 45 หลายเดือนก่อน
Inferential Statistics Course: #13 Exponential Distribution
Inferential Statistics Course: #14 Uniform Distribution
มุมมอง 65 หลายเดือนก่อน
Inferential Statistics Course: #14 Uniform Distribution
Inferential Statistics Course: #15 Normal Distribution and Central Limit Theorem
มุมมอง 195 หลายเดือนก่อน
Inferential Statistics Course: #15 Normal Distribution and Central Limit Theorem
Inferential Statistics Course: #16 Normalization
มุมมอง 65 หลายเดือนก่อน
Inferential Statistics Course: #16 Normalization
Inferential Statistics Course: #17 T Distribution
มุมมอง 75 หลายเดือนก่อน
Inferential Statistics Course: #17 T Distribution
Inferential Statistics Course: #18 N vs T
มุมมอง 105 หลายเดือนก่อน
Inferential Statistics Course: #18 N vs T
Inferential Statistics Course: #19 Chi Squared Distribution
มุมมอง 45 หลายเดือนก่อน
Inferential Statistics Course: #19 Chi Squared Distribution
Inferential Statistics Course: #20 F Distribution
มุมมอง 55 หลายเดือนก่อน
Inferential Statistics Course: #20 F Distribution
Inferential Statistics Course: #21 Statistical Tables
มุมมอง 95 หลายเดือนก่อน
Inferential Statistics Course: #21 Statistical Tables
Inferential Statistics Course: #22 Hypothesis testing
มุมมอง 65 หลายเดือนก่อน
Inferential Statistics Course: #22 Hypothesis testing
Inferential Statistics Course: #23 Confidence Intervals
มุมมอง 55 หลายเดือนก่อน
Inferential Statistics Course: #23 Confidence Intervals
AI is awesome
w vid
This doesn't make sense to me. Look at these two sentences in the problem statement: * A person that achieves their goals has a 95% chance of feeling accomplished. * What is the probability that a person is happy given they achieved their goals? The question can be rephrased as: "Given a person has achieved their goals, what is the probability they are happy?" This makes it clear that both of these statements refer to the same prior probability, which is that the person has achieved their goals. Thus the answer is 95% (assuming accomplished == happy). Btw, thanks for the tree visualization here, that really helps clarify some things about Bayes' theorem for me.
exaaaaaactly
took me a while but the question really is wrong
Ask it what a woman is
really great video! thanks
Don't forget to do the procedure (like and subscribe)
Loads of value!
Link to the full video: th-cam.com/video/93M37WTjSCQ/w-d-xo.html
Kramnik's team of mathematicians would like to contest your findings.
Nice Project Sir
Wow! Excellent, thank you so much for the explanation. The tree really helped a lot understanding the problem.
Thank you for the amazing 😍 video...Waiting for python for ml video ....
Awesome morning motivation. Waiting for video on python for mlops
Super video Dear Math . extremely gained good knowledge.Do u have any course on python for ml or python mlops . It would be most demanding video on internet .
Yes, currently building it. Will be available soon.
@@theevilmathcat sure please thank you very much.
Hello sir could you please suggest me python for mlops text book or videos or if possible kindly make video on python for ml . thank you
Working on the next video.
The best ever video on ml i saw on internet. Thank you sir for this amazing video.
You are most welcome!
this watch was an absolute gem!
Thank you for your kind words.
Thanks man really helpful
Super helpful, thanks!
thank you sir, I was really getting understanding of inferential statistics through this course, but I got confused in the exercise, What was the question, what were we asked to find?
thanks a lot pal! dont know why its so hard to find an example on LSE with numbers. cheers!
thanks bro
super helpful. tysm
Your video came on sponser
👇 SUBSCRIBE👇 ►TH-cam: th-cam.com/video/uv3xHVkaCYU/w-d-xo.htmlsub_confirmation=1
👇 SUBSCRIBE👇 ►TH-cam: th-cam.com/video/uv3xHVkaCYU/w-d-xo.htmlsub_confirmation=1
thank u very much, "making the tree" was the tip i needed to understanding this theorem and solving an exercise
God! I love this channel!
very useful, thank you for this beautiful condense overview.