Joe Ranalli
Joe Ranalli
  • 17
  • 257 488
PSU HN, KINES 077, Lecture #3
PSU HN, KINES 077, Lecture #3
มุมมอง: 286

วีดีโอ

PSU Hn, Kines077, Lecture #11
มุมมอง 839 ปีที่แล้ว
PSU Hn, Kines077, Lecture #11
PSU Hn, Kines077, Lecture #10
มุมมอง 719 ปีที่แล้ว
PSU Hn, Kines077, Lecture #10
PSU Hn, Kines077, Lecture #9
มุมมอง 729 ปีที่แล้ว
PSU Hn, Kines077, Lecture #9
PSU Hn, Kines077, Lecture #8
มุมมอง 719 ปีที่แล้ว
PSU Hn, Kines077, Lecture #8
PSU Hn, Kines077, Lecture #7
มุมมอง 649 ปีที่แล้ว
PSU Hn, Kines077, Lecture #7
PSU Hn, Kines077, Lecture #5
มุมมอง 759 ปีที่แล้ว
PSU Hn, Kines077, Lecture #5
PSU Hn, Kines077, Lecture #4
มุมมอง 669 ปีที่แล้ว
PSU Hn, Kines077, Lecture #4
PSU Hn, Kines077, Lecture 3
มุมมอง 629 ปีที่แล้ว
PSU Hn, Kines077, Lecture 3
PSU Hn, Kines 077, Lecture 2
มุมมอง 1449 ปีที่แล้ว
This video screencast was created with Doceri on an iPad. Doceri is free in the iTunes app store. Learn more at www.doceri.com
Intro to Cardio GraphTutorial
มุมมอง 1079 ปีที่แล้ว
Graph tutorial for KINES 062 at PSU Hazleton
Lesson 6 - The Energy Equation
มุมมอง 38K10 ปีที่แล้ว
Online lesson for EME 303 at Penn State Hazleton. This lesson follows the derivation of the Energy Equation for fluid mechanics using the Reynolds Transport Theorem. License: CC-BY-SA 4.0 (creativecommons.org/licenses/by-sa/4.0/)
Lesson 5 - Rotating Control Volumes
มุมมอง 13K10 ปีที่แล้ว
Online lesson for EME 303 at Penn State Hazleton. This lesson follows the derivation of the form of the Reynolds Transport Theorem used for rotating Control Volumes. License: CC-BY-SA 4.0 (creativecommons.org/licenses/by-sa/4.0/)
Lesson 4 - Moving Control Volumes
มุมมอง 20K10 ปีที่แล้ว
Online lesson for EME 303 at Penn State Hazleton. This lesson follows the derivation of the form of the Reynolds Transport Theorem used for moving Control Volumes. License: CC-BY-SA 4.0 (creativecommons.org/licenses/by-sa/4.0/)
Lesson 3 - Conservation of Momentum
มุมมอง 28K10 ปีที่แล้ว
Online lesson for EME 303 at Penn State Hazleton. This lesson follows the derivation of the equations for Conservation of Momentum for an integral control volume. License: CC-BY-SA 4.0 (creativecommons.org/licenses/by-sa/4.0/)
Lesson 2 - Conservation of Mass
มุมมอง 26K10 ปีที่แล้ว
Lesson 2 - Conservation of Mass
Lesson 1 - The Reynolds Transport Theorem
มุมมอง 131K10 ปีที่แล้ว
Lesson 1 - The Reynolds Transport Theorem

ความคิดเห็น

  • @ariid4662
    @ariid4662 6 หลายเดือนก่อน

    Loads of love from India!! <3 I have my fluid mechanics paper tomorrow; this is the best explanation of Reynold's transport theorem I found!! Thankyou soo much!

  • @Strategic814
    @Strategic814 7 หลายเดือนก่อน

    Good video 😊😊

  • @kumar-jatin-2000
    @kumar-jatin-2000 7 หลายเดือนก่อน

    You are awesome!

  • @amaljith007aj
    @amaljith007aj 10 หลายเดือนก่อน

    Excellent explanation 💯

  • @IshaanPradhan-x9s
    @IshaanPradhan-x9s ปีที่แล้ว

    the best explaination ive seen till date for Reynolds Transport Theorem.

  • @_IntroMe
    @_IntroMe ปีที่แล้ว

    Finally I found the best one. Thank you so much ❤

  • @tovichallenger7469
    @tovichallenger7469 ปีที่แล้ว

    you kind sir, just saved my life.

  • @yangli3932
    @yangli3932 2 ปีที่แล้ว

    Thanks for your video. It is very useful!

  • @sankoktas
    @sankoktas 2 ปีที่แล้ว

    Very helpful, thank you!

  • @anoojafaustine2480
    @anoojafaustine2480 2 ปีที่แล้ว

    Finally I understood what is this.... thanks for this wonderful explanation of yours ... really helpful 💯

  • @57alex360
    @57alex360 2 ปีที่แล้ว

    this is videogamedunkey if he had a college degree in CFD lmao

  • @sourabhpandey2410
    @sourabhpandey2410 2 ปีที่แล้ว

    If control volume analysis focuses on a FIXED region in space then how it is allowed to change its size?

    • @EME303HN
      @EME303HN 2 ปีที่แล้ว

      It really just means that you're fixed to something that's independent of the flow. So perhaps the control volume is "all the water in a bath tub." The size of that control volume will increase and decrease along with the water level but the physical thing it represents remains fixed. In Into Thermo we would describe the difference most basically as: a system follows the same mass while a control volume allows mass to enter and leave to accommodate representation of some convenient device.

    • @sourabhpandey2410
      @sourabhpandey2410 2 ปีที่แล้ว

      @@EME303HN ok. By now I have never encountered any case where the size of control volume changes. In fact I have seen some well known people in fluid mechanics area saying that the volume of a control volume region doesn't change ( that is why I asked about size and not shape). Thank you😊.

  • @priyagupta7662
    @priyagupta7662 2 ปีที่แล้ว

    So good 👍best explanation sir 👏

  • @ninjustumaster5101
    @ninjustumaster5101 2 ปีที่แล้ว

    11:43 CAT ALERT!!!

  • @abhishekkumarjaiswal7397
    @abhishekkumarjaiswal7397 2 ปีที่แล้ว

    Thank you so much. It's really helpful. Soon I will be uploading a little more visualization based explanation of RTT based on what I learnt through your video. Thanks again.

  • @SUMITKUMAR-tm4ht
    @SUMITKUMAR-tm4ht 3 ปีที่แล้ว

    Superb video...even guy without mechanical or civil background can understand

  • @kamranshirazi3030
    @kamranshirazi3030 3 ปีที่แล้ว

    Good one

  • @alielhajj79
    @alielhajj79 3 ปีที่แล้ว

    perfect!

  • @mdabdullahalmamun5067
    @mdabdullahalmamun5067 3 ปีที่แล้ว

    Best 16.11 mins in my life as gas dynamics students....

  • @antonissexywisdom
    @antonissexywisdom 3 ปีที่แล้ว

    You are a living legend. What is that nice font you used?

    • @EME303HN
      @EME303HN 3 ปีที่แล้ว

      It was a custom handwriting font I made

  • @baslielabraham7152
    @baslielabraham7152 3 ปีที่แล้ว

    This explains it all. Thank you!

  • @michaelchantonese
    @michaelchantonese 4 ปีที่แล้ว

    Hi Joe, excellent explanation. Actually understood what was happening for once! Just a question, 11:18 was this supposed to be "Flow rate of B(out) of the CV, and not system? Thanks!

    • @EME303HN
      @EME303HN 4 ปีที่แล้ว

      Yep that's right! Guess I was being a little careless with choice of words.

    • @michaelchantonese
      @michaelchantonese 4 ปีที่แล้ว

      @@EME303HN Awesome. Thanks for clarifying :)

  • @marcuscesar1343
    @marcuscesar1343 4 ปีที่แล้ว

    Great way to derivate this important theorem. Many thanks for sharing!

  • @kushakjafry1329
    @kushakjafry1329 4 ปีที่แล้ว

    one of the best explanation.... thanks

  • @richardaversa7128
    @richardaversa7128 4 ปีที่แล้ว

    6:42 "And you can probably see that we're going to get into calculus here". Bruh I can't even see a "d" in a word without thinking I'm about to be calcced

  • @jheadley635
    @jheadley635 4 ปีที่แล้ว

    Good video, thanks! I imagined Badger from Breaking Bad teaching me fluid mechanics.

  • @mojtabakarimtabar4407
    @mojtabakarimtabar4407 4 ปีที่แล้ว

    best explanatin loved it

  • @beatrizreis9087
    @beatrizreis9087 4 ปีที่แล้ว

    MASSIVE thanks for this

  • @CDinkle
    @CDinkle 4 ปีที่แล้ว

    11:43 A cat meows off in the distance

  • @tymofei8586
    @tymofei8586 4 ปีที่แล้ว

    Thanks brilliant explanation

  • @lapchauhung2605
    @lapchauhung2605 4 ปีที่แล้ว

    you are wonderful teacher, I love u!!!!

  • @naveenraj6277
    @naveenraj6277 4 ปีที่แล้ว

    Thanks, man .u just cleared my years of doubt

  • @sharooz1122
    @sharooz1122 5 ปีที่แล้ว

    best explanation!!!!!

  • @JoeyDiCienzo
    @JoeyDiCienzo 5 ปีที่แล้ว

    best explanation yet... simple and effective! thanks

  • @bernadettebouchard415
    @bernadettebouchard415 5 ปีที่แล้ว

    This is total common sense. Phrased lovingly.

  • @dsbupadrasta2385
    @dsbupadrasta2385 5 ปีที่แล้ว

    Thanks a lot man.. U really helped for understanding the basics of my research

  • @augustye3489
    @augustye3489 5 ปีที่แล้ว

    Than you so so so much. My native language is not English, so I find it trouble to understand what my prof said cause he spoke at a high speed. Now I understand!!!

  • @leeheebeom5504
    @leeheebeom5504 5 ปีที่แล้ว

    You are my hero!!thanks alot!

  • @jayeshmahajan6764
    @jayeshmahajan6764 5 ปีที่แล้ว

    Your explanation is awesome 😁😊

  • @mariamfirras6279
    @mariamfirras6279 5 ปีที่แล้ว

    GREAT EXPLANATION THANKS!

  • @manandepala3673
    @manandepala3673 5 ปีที่แล้ว

    The best explanation for reynolds transport theorem so far! Loved it!!!

  • @crismathews4354
    @crismathews4354 5 ปีที่แล้ว

    great video prof, thanks a lot!

  • @JayTheMachine
    @JayTheMachine 5 ปีที่แล้ว

    I wish i was in class. 😢. M from india we need teachers like you. We have really pathetic teachers here. Even in best universities.

  • @JayTheMachine
    @JayTheMachine 5 ปีที่แล้ว

    Its a clear explanation thanks bro... Sub. And liked.

  • @kevinyapri6941
    @kevinyapri6941 5 ปีที่แล้ว

    I'm still confused about the derivative parts. Why do we use material derivative for the B_sys? What I've learnt is this: For B_sys, it only got derived by time, not with position, so it can't be written as material derivative right? Why don't we use partial derivative notation here?

    • @sabyasachisen8767
      @sabyasachisen8767 5 ปีที่แล้ว

      Hi Kevin, you have a valid point. The material derivative is not applicable to B_sys. The operator D/Dt can be applied only to field variables (like velocity, temperature, density etc) and not to variables associated with identifiable entities of mass. Hence, it is appropriate to use the operator d/dt for B_sys where B_sys = integral of (rho*b*dV) over the material volume. Also, please note that the volume integral corresponding to B_sys at 3:20 is an integral over a material volume whereas the volume integral corresponding to B_cv = integral of (rho*b*dV) is an integral over a volume which is a geometric entity (not associated with matter).

  • @1234SLUR
    @1234SLUR 5 ปีที่แล้ว

    really wish you have videos for those problems at the end

  • @ingoingason6680
    @ingoingason6680 5 ปีที่แล้ว

    it's to simple :(

  • @jensburgert838
    @jensburgert838 5 ปีที่แล้ว

    Thank you very much for the great video! I still have same issues understanding the lagrangian idea. If we would talk about a solid material or one particle, I would totally understand it. But how is it possible for fluids, that the particles, that are considered at time t in the system volume are the same particles at time t +dt and are not mixed up with other particles. So basically the question is, how is it possible to follow a package of mass as it could could comprise of other particles a little time later?

    • @eng.andre.fialho
      @eng.andre.fialho 4 ปีที่แล้ว

      One year later but I hope I can help. That's because of continuum hypothesis. The volume we have is big enough to keep particles inside it and small enough to measure the same quantities in every point. Besides of that, there's no mass crossing a system (or a volume of fluid) , so it can be deformed and its shape can be changed but it will still have the same particles. And because it can be deformed, in Fluid Mechanics it's much more useful to work with control volumes, which is completely defined by you in the sense of geometry, size and so on.

  • @jensburgert838
    @jensburgert838 5 ปีที่แล้ว

    amazing explanation! Thanks a lot!!

  • @wiskifrac
    @wiskifrac 6 ปีที่แล้ว

    Very good! Thanks