Bill Basener
Bill Basener
  • 53
  • 81 663
M1 Code Walkthrough
Walking though the code for module 1 in Statistical Learning for Remotes Sensing. We take the time to discuss details of many common Python commands, especially for working with image arrays and plots.
มุมมอง: 39

วีดีโอ

HyperspectralPy - Open image and Create Regions of Interest
มุมมอง 578 หลายเดือนก่อน
This is a quick tutorial on how to open a hyperspectral image, create ROIs, and view a spectral library using the open source HyperspectrlPy GUI-based software that can be installed via pip install.
YOLO8 Object Detection with LiDAR - Part 4
มุมมอง 475ปีที่แล้ว
This is video #4 in our series on object detection in LiDAR data with YOLO8. I will demonstrate how to train your own YOLO8 model on your labeled LiDAR data.
YOLO8 Object Detection with LiDAR - Part 3
มุมมอง 586ปีที่แล้ว
This is video #3 in our series on object detection in LiDAR data with YOLO8. I will demonstrate how to label LiDAR raster files using Roboflow.
YOLO8 Object Detection with LiDAR - Part 2
มุมมอง 954ปีที่แล้ว
This is video #2 in our series on object detection in LiDAR data with YOLO8. I will demonstrate how to convert a LiDAR point cloud to a raster file for use in YOLO8.
YOLO8 Object Detection with LiDAR - Part 1
มุมมอง 477ปีที่แล้ว
This is video #1 in our series on object detection in LiDAR data with YOLO8. I will demonstrate how to download LiDAR data from the USGS website.
TensorFlow Tutorial Pt.1
มุมมอง 237ปีที่แล้ว
Demo of how to code and optimize neural networks in TensorFlow. In this first part we discuss a classification network. All code is available in my GitHub at: github.com/wbasener/Neural-Netork-From-Scratch-in-Python/blob/main/M2_6_Tutorial_neural_nets_with_keras.ipynb. I assume you know what a neural network is, but little prior coding is required. The goal is to get over the initial challenge ...
TensorFlow Tutorial Pt.2
มุมมอง 22ปีที่แล้ว
Demo of how to code and optimize neural networks in TensorFlow - Part 2 focuses on regression using a California house price dataset. All code is available in my GitHub at: github.com/wbasener/Neural-Ne.... I assume you know what a neural network is, but little prior coding is required. The goal is to get over the initial challenge in coding using TensorFlow that many people encounter. We go ov...
TensorFlow Tutorial Pt.3
มุมมอง 23ปีที่แล้ว
Demo of how to code and optimize neural networks in TensorFlow - Part 3 focuses on optimizing parameters using random grid search and Bayesian optimization. All code is available in my GitHub at: github.com/wbasener/Neural-Ne.... I assume you know what a neural network is, but little prior coding is required. The goal is to get over the initial challenge in coding using TensorFlow that many peo...
LIDAR GRAND CHALLENGE
มุมมอง 392 ปีที่แล้ว
temp upload for LiDAR Grand Challenge
Bills D Smother Ravens - were they good or lucky?
มุมมอง 723 ปีที่แล้ว
In this video we take a look at the Bills performance in 2020 and so what most predictions of the Bills-Ravens game got wrong. Hint - the Bills have a great defense now, and we can see it is a trend by peaking a little into their season stats. (Also, sorry about the audio. Used a headset instead of my mic to avoid some background noise.)
Josh Allen, by the Numbers
มุมมอง 4374 ปีที่แล้ว
Who are the best QBs in the NFL? Is Josh Allen elite? We take a look at the numbers to see who makes the cut after the 13th week of the 2020 season. I am a Prof. of Data Science at the University of Virginia and Emeritus Prof. of Math at the Rochester Institute of Technology.
Machine Learning 10.1 - Exploratory Data Analysis
มุมมอง 1144 ปีที่แล้ว
In this video, you will learn tools for exploratory data analysis. These tools allow a person to view data and look for trends and structures. Here, you will explore the terminology and goals for visualizations and unsupervised learning.
Machine Learning 10.2 - PCA Visualizations
มุมมอง 2204 ปีที่แล้ว
In this video, we will use PCA (Principal Components Analysis) for dimension reduction and to view high-dimensional data. We used principal components in Module 4 as part of the underlying math for Gaussian regression methods, and we used PCA for regularization in Module 6. Principal components provide a useful mathematical framework for modeling/measuring the shape of data, and, in this module...
Machine Learning 9.4 - R Lab Support Vector Machines
มุมมอง 1844 ปีที่แล้ว
Machine Learning 9.4 - R Lab Support Vector Machines
Machine Learning 9.3 - Support Vector Machines
มุมมอง 3784 ปีที่แล้ว
Machine Learning 9.3 - Support Vector Machines
Machine Learning 9.1 - Maximum Margin Classifier
มุมมอง 6K4 ปีที่แล้ว
Machine Learning 9.1 - Maximum Margin Classifier
Machine Learning 9.2 - Soft Margins and the Support Vector Classifier
มุมมอง 4514 ปีที่แล้ว
Machine Learning 9.2 - Soft Margins and the Support Vector Classifier
Machine Learning 8.5 - R Lab, Random Forest and Tree Ensembles
มุมมอง 1564 ปีที่แล้ว
Machine Learning 8.5 - R Lab, Random Forest and Tree Ensembles
Machine Learning 8.4 - Boosting Ensambles
มุมมอง 1204 ปีที่แล้ว
Machine Learning 8.4 - Boosting Ensambles
Machine Learning 8.2 - Random Forests
มุมมอง 1974 ปีที่แล้ว
Machine Learning 8.2 - Random Forests
Machine Learning 8.1 Bagging
มุมมอง 1654 ปีที่แล้ว
Machine Learning 8.1 Bagging
Machine Learning 7.4 - R Lab, Decision Trees
มุมมอง 2854 ปีที่แล้ว
Machine Learning 7.4 - R Lab, Decision Trees
Machine Learning 7.3 - Advantages and Disadvantages of Trees
มุมมอง 1804 ปีที่แล้ว
Machine Learning 7.3 - Advantages and Disadvantages of Trees
Machine Learning 7.2 - Classification Trees
มุมมอง 1534 ปีที่แล้ว
Machine Learning 7.2 - Classification Trees
Machine Learning 7.1 - Regression Trees
มุมมอง 2024 ปีที่แล้ว
Machine Learning 7.1 - Regression Trees
Machine Learning 6.4 - R Lab, Nonlinear Regression
มุมมอง 1334 ปีที่แล้ว
Machine Learning 6.4 - R Lab, Nonlinear Regression
Machine Learning 6.3 - Generalized Additive Models
มุมมอง 7674 ปีที่แล้ว
Machine Learning 6.3 - Generalized Additive Models
Machine Learning 6.2 - Regression Splines and Local Regression
มุมมอง 9294 ปีที่แล้ว
Machine Learning 6.2 - Regression Splines and Local Regression
Machine Learning 6.1 - Polynomial Regression and Step Functions
มุมมอง 8624 ปีที่แล้ว
Machine Learning 6.1 - Polynomial Regression and Step Functions

ความคิดเห็น

  • @filevich
    @filevich หลายเดือนก่อน

    thank you thank you thank you thank you Bill !

  • @mikeolinblare913
    @mikeolinblare913 3 หลายเดือนก่อน

    948 Benny Glen

  • @CottonChristian-e3r
    @CottonChristian-e3r 3 หลายเดือนก่อน

    Young Carol Harris Ruth Clark Jessica

  • @Sam1998Here
    @Sam1998Here 5 หลายเดือนก่อน

    Thank you for your explanation. I also think at 8:15 the multivariate normal distribution's probability density function should have $\sqrt{|\Sigma|}$ in the denominator (rather than $|\Sigma|$ as you have currently) and it also may be helpful to viewers to let them know that $p$ represents the dimension of the space we are considering

  • @janice3766
    @janice3766 5 หลายเดือนก่อน

    Thank you so much! 🙏🙏👍👍❤️❤️Are you able to provide slides for your videos, Prof Basener?

  • @user-qp9so1by1j
    @user-qp9so1by1j 6 หลายเดือนก่อน

    Super clear and simple. Thanks!

  • @gingerderidder8665
    @gingerderidder8665 7 หลายเดือนก่อน

    This beats my MIT lecture. WIll be coming back for more!

  • @jaafarelouakhchachi6170
    @jaafarelouakhchachi6170 9 หลายเดือนก่อน

    can you share these slides in the videos with me?

  • @deema_c
    @deema_c 10 หลายเดือนก่อน

    good explanation, funny that whenever he received an email notification I go check my inbox ='')

  • @marciamarquene5753
    @marciamarquene5753 11 หลายเดือนก่อน

    V não sei o meu não está o nome do meu amigo do cartão da minha irmã não tem nada a fazer com o 3f o meu não está funcionando não 3

  • @sunny_blue_skies
    @sunny_blue_skies 11 หลายเดือนก่อน

    I enjoyed watching your video, thank you. I will watch more of your videos on machine learning videos thank you!

  • @billbasener8784
    @billbasener8784 11 หลายเดือนก่อน

    Here is the link to the download site: apps.nationalmap.gov/lidar-explorer/#/

  • @aditihumne5147
    @aditihumne5147 11 หลายเดือนก่อน

    Sir where can i find yololidarTool.py can u provide that file

  • @man9mj
    @man9mj ปีที่แล้ว

    Thank you for sharing this. RF and SVM are the way to go with point clouds.

  • @ankanpaul2904
    @ankanpaul2904 ปีที่แล้ว

    ❤❤

  • @geo123473
    @geo123473 ปีที่แล้ว

    Very great video! Thank you professor!! :)

  • @praveenm5723
    @praveenm5723 ปีที่แล้ว

    Thank you

  • @saunokchakrabarty8384
    @saunokchakrabarty8384 ปีที่แล้ว

    How do you get the values of 0.15 and 0.02? I'm getting different values.

    • @rmharp
      @rmharp ปีที่แล้ว

      Agreed. I got approximately 0.18 and 0.003, respectively.

  • @Spiegeldondi
    @Spiegeldondi ปีที่แล้ว

    A very good and concise explanation, even starting with the explanation of likelihood. Very well done!

  • @asdfafafdasfasdfs
    @asdfafafdasfasdfs ปีที่แล้ว

    Why do the stepwise functions have diagonals (slope != 0) joining the parts? shouldn't they all be joined by vertical lines, since they are continuous and yield either a 0 or a constant value?

  • @BluedvdMaster
    @BluedvdMaster ปีที่แล้ว

    The NFL is changing Bill! Let's up the weight on rushing yards (...I'll admit I'm a Baltimore fan).

  • @AnaCcarita
    @AnaCcarita ปีที่แล้ว

    Perfect

  • @mustafizurrahman5699
    @mustafizurrahman5699 2 ปีที่แล้ว

    Excellent

  • @spencerantoniomarlen-starr3069
    @spencerantoniomarlen-starr3069 2 ปีที่แล้ว

    10:48 ohhhhh, I was just going back and forth between the sections on LDA and QDA in three different textbooks (An Introduction to Statistical Learning, Applied Predictive Analytics, and Elements of Statistical Learning) for well over an hour and that multivariate normal pdf was really throwing me off big time. Mostly because of the capital sigma to the negative 1st power term, I didn't realize it was literally a capital sigma, I kept thinking it was a summation of something!

  • @Dhdhhhjjjssuxhe
    @Dhdhhhjjjssuxhe 2 ปีที่แล้ว

    Good job. It is very easy to follow and understand

  • @pinkAisle
    @pinkAisle 2 ปีที่แล้ว

    i was trying to read it my self but you made it so much simpler

    • @billbasener8784
      @billbasener8784 2 ปีที่แล้ว

      Thanks! I am glad it was helpful.

  • @may-yc6qn
    @may-yc6qn 2 ปีที่แล้ว

    good explanation, i hope there is always example of implementation

  • @clintonlabrador6386
    @clintonlabrador6386 2 ปีที่แล้ว

    yoooo. This really helped me, my guy. Good work.

  • @hassanrevel
    @hassanrevel 2 ปีที่แล้ว

    Thanks professore

  • @黃楷翔-h8j
    @黃楷翔-h8j 2 ปีที่แล้ว

    Very useful information, thanks you professor!

    • @billbasener8784
      @billbasener8784 2 ปีที่แล้ว

      I am glad its helpful! Thanks for the kind words.

  • @Nader95
    @Nader95 2 ปีที่แล้ว

    13:42 correction: higher p-values indicate not very good predictors (insignificant); low predictors with p-values, actually, are good

    • @billbasener8784
      @billbasener8784 2 ปีที่แล้ว

      Thanks for pointing that out. You are exactly right - I said it the opposite of what I should have said!

  • @Nader95
    @Nader95 2 ปีที่แล้ว

    9:15 you say we should expect 51% since up/(up+down) days equals 51%, but we should expect 50% accuracy with randomly guessing (via frequentist inference); 51% does not represent the number of time you correctly call the market up AND the number of time you correctly call the market down, which is what the Confusion Matrix does. So, (up days / (up days + down days)) does not represent accuracy; confusion matrix represents accuracy when up==up and down==down over total number of days. So confusion matrix is not the same as your 51%; cannot compare 52% with 51%.

  • @Nader95
    @Nader95 2 ปีที่แล้ว

    thanks, can you do a video on neural networks from ISLR textbook?

  • @Nader95
    @Nader95 2 ปีที่แล้ว

    So basically, ridge/lasso regression penalize for the *size* of the coefficients while aic/bic subset selection penalizes for the *number* of coefficients

  • @iqm901
    @iqm901 2 ปีที่แล้ว

    This is an excellent series. Thank you so much for taking the time to make these

  • @pol4624
    @pol4624 3 ปีที่แล้ว

    very good video, thank you professor

    • @billbasener8784
      @billbasener8784 3 ปีที่แล้ว

      I am glad it is helpful. Thank you for the kind words!

  • @MrRynRules
    @MrRynRules 3 ปีที่แล้ว

    Thank you sir, well explained.

  • @js913
    @js913 3 ปีที่แล้ว

    Blender!!! Shocked and Surprised !! Awesome 👍👍👍

  • @zhengcao6529
    @zhengcao6529 3 ปีที่แล้ว

    You are so great. Keep up please.

  • @haitaoxu3468
    @haitaoxu3468 3 ปีที่แล้ว

    could you share the slide?

  • @JappieYow
    @JappieYow 3 ปีที่แล้ว

    Interesting and clear explanation! Thank you very much, this will help me in writing my thesis!

  • @mirohorvath
    @mirohorvath 3 ปีที่แล้ว

    Thank you for sharing this, and thumbs up for visualization in Blender :)

    • @ansondiego8875
      @ansondiego8875 3 ปีที่แล้ว

      you probably dont care but if you are stoned like me during the covid times you can watch pretty much all the new movies and series on instaflixxer. Been binge watching with my girlfriend during the lockdown :)

    • @andrewzakai3896
      @andrewzakai3896 3 ปีที่แล้ว

      @Anson Diego definitely, I've been using InstaFlixxer for since december myself :)

    • @noeldakota7395
      @noeldakota7395 3 ปีที่แล้ว

      @Anson Diego Definitely, I have been watching on InstaFlixxer for since november myself =)

  • @kaym2332
    @kaym2332 3 ปีที่แล้ว

    Hi! If the classes are assumed to be normally distributed, does that subsume that the features making up an observations are normally distributed as well?

    • @billbasener8784
      @billbasener8784 3 ปีที่แล้ว

      Yes. If the each class has a multivariate normal distribution than each individual feature variable ihas a single variable normal distribution.

  • @vi5hnupradeep
    @vi5hnupradeep 3 ปีที่แล้ว

    Thankyou so much ! Cleared a lot of my doubts

  • @lizzy1138
    @lizzy1138 3 ปีที่แล้ว

    Thanks for this! I needed to clarify these methods in particular, was reading about them in ISLR

  • @benjamincameron90
    @benjamincameron90 3 ปีที่แล้ว

    THANK YOU SO MUCH!!

  • @Crash-xz6hw
    @Crash-xz6hw 4 ปีที่แล้ว

    Great video. Many thanks

  • @alfibima4247
    @alfibima4247 4 ปีที่แล้ว

    How to classify LiDAR point cloud using machine learning in R.

  • @alfibima4247
    @alfibima4247 4 ปีที่แล้ว

    How to classify LiDAR point cloud using machine learning in R

  • @alfibima4247
    @alfibima4247 4 ปีที่แล้ว

    How to classify LiDAR point cloud using machine learning in R.