ML For Nerds
ML For Nerds
  • 44
  • 170 053
YOLO-V4: MiWRC, CmBN, DROP BLOCK, CIOU, DIOU || YOLO OBJECT DETECTION SERIES
This video is about Yolo object detection family. This is about YoloV4 which is the most popular and widely used object detector in the industry. YoloV4 has the highest usage by industry for commercial purposes because of its optimal speed and accuracy. In this video, we discussed Multi-Input Weighted Residual Connections, Cross mini Batch Normalization, Drop Block Regularisation, types of IOU losses. These are all parts of Bag of Specials and Bag of Features in YoloV4.
YOLO Playlist:
th-cam.com/play/PL1u-h-YIOL0sZJsku-vq7cUGbqDEeDK0a.html
Neural Networks From Scratch Playlist:
th-cam.com/play/PL1u-h-YIOL0u7R6dg_d5O5M9HUj0SFjHE.html
Link to Papers:
YoloV4: arxiv.org/pdf/2004.10934.pdf
EfficientDet: arxiv.org/pdf/1911.09070.pdf
Cross Batch Norm: arxiv.org/pdf/2002.05712.pdf
DropBlock Regularization: arxiv.org/pdf/1810.12890.pdf
IOU Losses: arxiv.org/pdf/1911.08287.pdf
Chapters:
00:00 Introduction
02:00 Cross Mini-Batch Normalization
11:06 Multi-Input Weighted Residual Connections
17:50 Drop Block Regularization
25:57 IOU Loss
30:32 GIOU Loss
34:29 DIOU Loss
37:29 CIOU Loss
43:06 Conclusion
#yolo #yoloobjectdetection #objectdetection #yolov4 #yolov5 #yolov3 #yolov7 #computervision #imageclassification
มุมมอง: 3 627

วีดีโอ

Batch Normalization - Part 4: Python Implementation on MNIST dataset
มุมมอง 674ปีที่แล้ว
We have been discussing Batch Normalization in detail. We have seen why do we need Batch Normalization and we have dig deeper into how Batch Normalization works and also understood the significance of learnable parameters called Gamma and Beta which are Scaling and Shifting. We also saw the Backpropagation for Batch Normalization layer and how Batch Normalization works during inference without ...
Batch Normalization - Part 3: Backpropagation & Inference
มุมมอง 1.9Kปีที่แล้ว
We have been discussing Batch Normalization in detail. We have seen why do we need Batch Normalization and we have dig deeper into how Batch Normalization works and also understood the significance of learnable parameters called Gamma and Beta which are Scaling and Shifting. In this video, we will see the Backpropagation for Batch Normalization layer and also see how Batch Normalization works d...
Batch Normalization - Part 2: How it works & Essence of Beta & Gamma
มุมมอง 1.7Kปีที่แล้ว
We have been discussing Batch Normalization in detail. We have seen why do we need Batch Normalization in the previous video. In this video, we will dig deeper into how Batch Normalization works and also understand the significance of learnable parameters called Gamma and Beta which are Scaling and Shifting. Deep Learning Projects playlist: th-cam.com/play/PL1u-h-YIOL0s2GYHiaemx7-o-iWrht_Lk.htm...
Batch Normalization - Part 1: Why BN, Internal Covariate Shift, BN Intro
มุมมอง 4.4Kปีที่แล้ว
In this video, we dig deeper into “Why do we need Batch Normalization?” And Internal Covariate Shift. Deep Learning Projects playlist: th-cam.com/play/PL1u-h-YIOL0s2GYHiaemx7-o-iWrht_Lk.html Neural Networks From Scratch in Python: th-cam.com/play/PL1u-h-YIOL0u7R6dg_d5O5M9HUj0SFjHE.html Chapters: 00:00 Introduction 02:52 Issues with NN Training w/o BN 04:00 Internal Covariate Shift 04:28 What ar...
Neural Networks From Scratch - Lec 24 - Regression Losses - Mean Square Logarithmic Error
มุมมอง 789ปีที่แล้ว
Building Neural Networks from scratch in python. This is the twenty fourth video of the course - "Neural Networks From Scratch". This video covers most commonly used loss functions we use in regression problems. We discussed the important properties of log function and its significance to regression problems. We also saw Mean Square Log Error and its advantages and drawbacks. We also saw the py...
YOLO-V4: CSPDARKNET, SPP, FPN, PANET, SAM || YOLO OBJECT DETECTION SERIES
มุมมอง 11Kปีที่แล้ว
This video is about Yolo object detection family. This is about YoloV4 which is the most popular and widely used object detector in the industry. YoloV4 has the highest usage by industry for commercial purposes because of its optimal speed and accuracy. In this video, we discussed about Backbone CSPDarknet-53, SPP, FPN, PANT and SAM modules. These are all parts of Bag of Specials in YoloV4. YOL...
YOLO-V4: Optimal Speed & Accuracy || YOLO OBJECT DETECTION SERIES
มุมมอง 8Kปีที่แล้ว
This video is about Yolo object detection family. This is about YoloV4 which is the most popular and widely used object detector in the industry. YoloV4 has the highest usage by industry for commercial purposes because of it's optimal speed and accuracy. YOLO Playlist: th-cam.com/play/PL1u-h-YIOL0sZJsku-vq7cUGbqDEeDK0a.html Neural Networks From Scratch Playlist: th-cam.com/play/PL1u-h-YIOL0u7R6...
YOLO-V3: An Incremental Improvement || YOLO OBJECT DETECTION SERIES
มุมมอง 10Kปีที่แล้ว
This video is about Yolo object detection family. In this video, we dig deeper into Yolo-v3 object detection model, which is an incremental update over YoloV2. This was the Sate of the art object detector and faster object detector back then when it was released. YOLO Playlist: th-cam.com/play/PL1u-h-YIOL0sZJsku-vq7cUGbqDEeDK0a.html Neural Networks From Scratch Playlist: th-cam.com/play/PL1u-h-...
YOLO-9000 - An Object Detector for 9000 classes || YOLO OBJECT DETECTION SERIES
มุมมอง 4.5K2 ปีที่แล้ว
This video is about yolo object detection family. In this video, we will dig deeper into yolo9000 model which can detect objects from 9000 categories. This is an extension of YOLOv2 for detecting objects at largest scale. This uses Darknet 19 backbone for yolo. YOLO Playlist: th-cam.com/play/PL1u-h-YIOL0sZJsku-vq7cUGbqDEeDK0a.html Neural Networks From Scratch Playlist: th-cam.com/play/PL1u-h-YI...
YOLO V2 - Better, Faster & Stronger || YOLO OBJECT DETECTION SERIES || YOLO9000
มุมมอง 15K2 ปีที่แล้ว
This is the second video of the series about YOLO object detection model family. This video digs deeper into YOLO-V2 paper which is an improvement over Yolo-V1. This version of yolo object detector is much more accurate and faster than yolo v1. They have made an new architecture named darknet 19 for backbone which is more accurate and less complex. YOLO Playlist: th-cam.com/play/PL1u-h-YIOL0sZJ...
YOLO V1 - YOU ONLY LOOK ONCE || YOLO OBJECT DETECTION SERIES
มุมมอง 43K2 ปีที่แล้ว
Hi Guys, I am starting a new series about YOLO object detection model family. This is not an overview series, we will dig deeper into every detail of these yolo object detectors. Everyone uses YOLO models, they are the state of the art models for object detection. Hope you learn something from these videos. YOLO Object Detection Series: th-cam.com/play/PL1u-h-YIOL0sZJsku-vq7cUGbqDEeDK0a.html PD...
Neural Networks From Scratch - Lec 23 - Regression Losses - Smooth L1 Loss and Huber Loss Functions
มุมมอง 1.7K2 ปีที่แล้ว
Building Neural Networks from scratch in python. This is the twenty third video of the course - "Neural Networks From Scratch". This video covers most commonly used loss functions we use in regression problems. We discussed Smooth L1 loss and Huber loss and their differences. Neural Networks From Scratch Playlist: th-cam.com/users/playlist?list... Please like and subscribe to the channel for mo...
Remove the confusion once for all! Cost Function vs Loss Function vs Objective Function
มุมมอง 1.5K2 ปีที่แล้ว
In this video, we have resolved the confusion between the most commonly used loss terms in machine learning. What is loss function? What is cost function? Are they same? Time stamps: 00:00 Introduction 00:22 What do you think? 00:35 Answer! Difference between them 02:02 Illustration with Example 03:10 One more difference 03:45 What is Objective Function then? 04:59 Conclusion #loss #objective #...
Neural Networks From Scratch - Lec 22 - MAE vs RMSE, Comparison with an Example
มุมมอง 1.1K2 ปีที่แล้ว
Building Neural Networks from scratch in python. This is the twenty second video of the course - "Neural Networks From Scratch". This video covers the similarities an important differences between MAE loss and RMSE loss functions, How do we interpret them and which one to prefer. Code Link: github.com/MLForNerds/Neural_network_from_scratch/blob/main/MAE_RMSE.ipynb Neural Networks From Scratch P...
What is Numpy? Why Numpy arrays are faster than python lists?
มุมมอง 6802 ปีที่แล้ว
What is Numpy? Why Numpy arrays are faster than python lists?
MNIST Classification: Hands-on Project in PyTorch 1.12
มุมมอง 5732 ปีที่แล้ว
MNIST Classification: Hands-on Project in PyTorch 1.12
PyTorch Vs Tensorflow: Jobs, Research and Industries. Who is the winner in 2022?
มุมมอง 1.6K2 ปีที่แล้ว
PyTorch Vs Tensorflow: Jobs, Research and Industries. Who is the winner in 2022?
MNIST Classification: Hands-on Project in Tensorflow 2.8
มุมมอง 5302 ปีที่แล้ว
MNIST Classification: Hands-on Project in Tensorflow 2.8
Building a Neural Network from scratch: MNIST Project (No Tensorflow/Pytorch, Just Numpy)
มุมมอง 15K2 ปีที่แล้ว
Building a Neural Network from scratch: MNIST Project (No Tensorflow/Pytorch, Just Numpy)
Neural Networks From Scratch - Lec 21 - Regression Losses - MSE & RMSE
มุมมอง 1K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 21 - Regression Losses - MSE & RMSE
Neural Networks From Scratch - Lec 20 - Regression Losses - MAE, MAPE & MBE
มุมมอง 1.3K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 20 - Regression Losses - MAE, MAPE & MBE
Neural Networks From Scratch - Lec 19 - Approaching Regression Problem with Neural Networks
มุมมอง 9392 ปีที่แล้ว
Neural Networks From Scratch - Lec 19 - Approaching Regression Problem with Neural Networks
Neural Networks From Scratch - Lec 18 - Typical Neural Network Training Setup
มุมมอง 7902 ปีที่แล้ว
Neural Networks From Scratch - Lec 18 - Typical Neural Network Training Setup
Neural Networks From Scratch - Lec 17 - Python Implementations of all Activation functions
มุมมอง 1.1K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 17 - Python Implementations of all Activation functions
Neural Networks From Scratch - Lec 16 - Summary of all Activation functions in 10 mins
มุมมอง 1.1K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 16 - Summary of all Activation functions in 10 mins
Neural Networks From Scratch - Lec 15 - GeLU Activation Function
มุมมอง 6K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 15 - GeLU Activation Function
Neural Networks From Scratch - Lec 14 - Mish Activation Function
มุมมอง 1.3K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 14 - Mish Activation Function
Neural Networks From Scratch - Lec 13 - Swish Activation Function
มุมมอง 1.5K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 13 - Swish Activation Function
Neural Networks From Scratch - Lec 12 - Softplus Activation Function
มุมมอง 1K2 ปีที่แล้ว
Neural Networks From Scratch - Lec 12 - Softplus Activation Function

ความคิดเห็น

  • @rahulhanot4481
    @rahulhanot4481 11 ชั่วโมงที่ผ่านมา

    when will I getYOLO V5 video

  • @mdhridoyahmed7666
    @mdhridoyahmed7666 วันที่ผ่านมา

    Please upload others yolo model

  • @lokeshborawar9899
    @lokeshborawar9899 15 วันที่ผ่านมา

    @MLForNerds Why do running_mean and running_var continue to be updated during training, even after the dataset has been processed for an epoch?

  • @usamatahir5429
    @usamatahir5429 15 วันที่ผ่านมา

    can you please share ppt/slides you used in this video i've my presentation on v2 next week

    • @MLForNerds
      @MLForNerds 14 วันที่ผ่านมา

      Ping me your email id

  • @devvfakeaccount
    @devvfakeaccount หลายเดือนก่อน

    This is as close to perfect as it's going to get for explaining the core of YOLO. Thank you

  • @shareknowledge7125
    @shareknowledge7125 หลายเดือนก่อน

    Very informative, waiting v5,v6,v7 also and more videos

  • @ThTh-d6b
    @ThTh-d6b หลายเดือนก่อน

    Please continue this series... they are underrated

  • @jayeshshinde9625
    @jayeshshinde9625 หลายเดือนก่อน

    03:40 Iam confused, how the cell would know that the ground truth object's center falls inside it both in training and inference part. And after that , how the cell predicts the x, y, w, h, coordinates (anchors) as we don't know the size or shape of the object. Cause after training, the CNN would be able to extract the object features. Hence Objectness scores and class probabilities for each cell are understandable.

  • @mpatcas
    @mpatcas 2 หลายเดือนก่อน

    As an interested layman, I am reading a book about ML but with only the book at hand it is very difficult to grasp how a neural network is working in 'real live'. Thank you very much for the clarity of your video. Makes thing much more easier to understand. This is of great value!

  • @alirahmanian5127
    @alirahmanian5127 2 หลายเดือนก่อน

    Thanks for the detailed explanation

  • @rogribas
    @rogribas 3 หลายเดือนก่อน

    Incredible explanation, thank you very much

  • @ShahzaibKhan-cp2ge
    @ShahzaibKhan-cp2ge 3 หลายเดือนก่อน

    Sir you deserve more subscribers

  • @konoko-o3o
    @konoko-o3o 3 หลายเดือนก่อน

    If you are trying to land a job what matters is what companies are using, not research papers or kaggle competitions.

  • @NegarTaheriashtiani
    @NegarTaheriashtiani 3 หลายเดือนก่อน

    very informative video and great explanation. Could you continue explain all versions of YOLO?

  • @loading_700
    @loading_700 3 หลายเดือนก่อน

    Thank you for this wonderful video. I have one question. YOLOv2 decides the ratios for the anchor boxes using the GT(ground truth) dataset. So does that mean it cannot be used(retrained) with the dataset that doesn't have GTs?

  • @ankitsharma-ol9qn
    @ankitsharma-ol9qn 3 หลายเดือนก่อน

    Greatest lecture... I have ever seen on youtube...Thank you so much..

  • @AkshayKumar-sg8qm
    @AkshayKumar-sg8qm 3 หลายเดือนก่อน

    amazing it is...thanks

  • @Dontknow-s2x
    @Dontknow-s2x 4 หลายเดือนก่อน

    2 min silence for those who can't find this video ! Best video for yolo i read it paper,watch video , read article and i was confused like hell in loss fn and bounding box now its clear thank you so much i recommed to everyone who is planning to study deep learning ❤♥

  • @yufeiwang2554
    @yufeiwang2554 4 หลายเดือนก่อน

    Thanks for your amazing YOLO series videos!

  • @karthickmurugan8478
    @karthickmurugan8478 4 หลายเดือนก่อน

    Is anchor boxes are created based on grid.. means the center of anchor will be in the selected grid?

  • @AjitChaturvedi-y2x
    @AjitChaturvedi-y2x 4 หลายเดือนก่อน

    The number of prediction for each grid is not equal to the number of classes. Its depend upon the number of anchor boxes and in the paper they have taken the 5 anchor boxes for each grid cell. So maximum number of prediction can yolov2 is 13*13*5.

  • @karthickmurugan8478
    @karthickmurugan8478 4 หลายเดือนก่อน

    Please explain more yolo versions from yolov5

  • @lovekesh88
    @lovekesh88 4 หลายเดือนก่อน

    class confidence is not conditional probability, the individual probabilities are conditional P(class_i | Object) and when you multiply with C_1 aka Pr(object), we get non conditional probabilities i.e. only Pr(Class_i)

  • @none-hr6zh
    @none-hr6zh 4 หลายเดือนก่อน

    for tx ty they are relative to grid cell why we are not multiplying with 64 like in yolov1

  • @LegeFles
    @LegeFles 4 หลายเดือนก่อน

    This implementation has overflow-error with very small or large values for x

  • @aneesarom
    @aneesarom 4 หลายเดือนก่อน

    bro start making videos once again, your explanataions are very good

  • @harshans7712
    @harshans7712 4 หลายเดือนก่อน

    Thanks a lot for this video, this was really helpful

  • @harshans7712
    @harshans7712 4 หลายเดือนก่อน

    Thanks a lot for your video, this helped me a lot to understand its working

  • @micahdelaurentis6551
    @micahdelaurentis6551 4 หลายเดือนก่อน

    Also, how is it possible that beta/gamma make a non-symmetric, non-normal distribution like in your picture? It can only give a different normal distribution that may not have mean 0 and std 1. But it's a linear transformation of a std normal, so it must still be normally distributed. Right?

  • @micahdelaurentis6551
    @micahdelaurentis6551 4 หลายเดือนก่อน

    I'm a little confused...you say at around 10:21 that in each mini batch we normalize the x's, which usually denotes the inputs and this doesn't seem like what I think of as batch normalization. But then you go on to say in the visual explanation afterwards what I expected and what I think is correct which is that we normalize the Zs in layers after the input layer before sending them to the activations. So, to be be clear: we don't normalize the batch inputs themselves, just the Zs, right? Or is it both? By the way, this is excellent material--it's just that this one point was confusing me a little

  • @daminirijhwani5792
    @daminirijhwani5792 4 หลายเดือนก่อน

    woah, i am happy i found this!

  • @daminirijhwani5792
    @daminirijhwani5792 4 หลายเดือนก่อน

    This is amazing could you do a transformer series!

  • @emoji4652
    @emoji4652 5 หลายเดือนก่อน

    Thanks

  • @emoji4652
    @emoji4652 5 หลายเดือนก่อน

    Glad! i found this legendary explanation

  • @emoji4652
    @emoji4652 5 หลายเดือนก่อน

    Best

  • @emoji4652
    @emoji4652 5 หลายเดือนก่อน

    Bro ❤ that's so better than 200 usdt lectures

  • @YashVardhanSingh-nw6sd
    @YashVardhanSingh-nw6sd 5 หลายเดือนก่อน

    hiii will u post yolo v5 ? this is the best playlist

  • @NulliusInVerba8
    @NulliusInVerba8 5 หลายเดือนก่อน

    thank you! clear and direct.

  • @wiputtuvaynond761
    @wiputtuvaynond761 5 หลายเดือนก่อน

    Thank you very much for the best explaination of yolo papers on youtube. I have a question of loss calculation on multiscale training. This affects the number of output grid (WxHXS) used in loss calculation when input image(WxH) size changes. How does the loss calculation maintain consistency for this training scheme?

  • @pratikpatil2866
    @pratikpatil2866 5 หลายเดือนก่อน

    could you please mention source of the mathematical explanations it would be great help.

  • @Maximos80
    @Maximos80 5 หลายเดือนก่อน

    The best explanations of YOLO on TH-cam. Period. Thank you!🙏

  • @tramyole2049
    @tramyole2049 5 หลายเดือนก่อน

    really great job sir! waiting for more lately versions

  • @consumeentertainment9310
    @consumeentertainment9310 6 หลายเดือนก่อน

    You rock!!! It was very detailed. Clearly, you have out a lot of work into this. Thank you so much🙏🙏🙏🙏🙏🙏

  • @adityakrishnajaiswal8663
    @adityakrishnajaiswal8663 6 หลายเดือนก่อน

    Just wow!

  • @tanishksingh8443
    @tanishksingh8443 6 หลายเดือนก่อน

    The best explanation for this concept, kindly keep making such content. Thanks a lot.

  • @giabao2602
    @giabao2602 6 หลายเดือนก่อน

    thanks for giving us perfect video, love you bro

  • @giabao2602
    @giabao2602 6 หลายเดือนก่อน

    thanks for helping us a lot in learning, truly appreciate your work

  • @sumanthpichika5295
    @sumanthpichika5295 6 หลายเดือนก่อน

    very detailed explanation, Thanks for making it more clear. I believe i didn't find any such video with the way you explained the things in deep. I have a doubt when you said total loss = obj loss+no obj loss, In the example you considered only 2 grid cells has an object which means obj loss is calculated for those 2 grid cells and remaining 47 grid cells falls under no obj loss right?

  • @adityaa8918
    @adityaa8918 6 หลายเดือนก่อน

    Underrated. Keep going man!

  • @syedmoiezullahbukhari2676
    @syedmoiezullahbukhari2676 6 หลายเดือนก่อน

    thank you i could have nerver learn and understand any better then your video