Tät Ghosh
Tät Ghosh
  • 65
  • 254 870
Dominic Joyce - Riemannian holonomy groups, Lesson 15
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University.
qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
มุมมอง: 259

วีดีโอ

Dominic Joyce - Riemannian holonomy groups, Lesson 14
มุมมอง 2224 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 13
มุมมอง 2244 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 12
มุมมอง 1884 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 11
มุมมอง 1974 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 10
มุมมอง 1934 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 09
มุมมอง 2164 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 08
มุมมอง 2214 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 07
มุมมอง 2344 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 06
มุมมอง 2534 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 05
มุมมอง 3754 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 04
มุมมอง 3884 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 03
มุมมอง 4994 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 02
มุมมอง 6754 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Dominic Joyce - Riemannian holonomy groups, Lesson 01
มุมมอง 2.3K4 ปีที่แล้ว
Masterclass by Dominic Joyce (Oxford University) at Centre for Quantum Geometry of Moduli Spaces, Aarhus University. qgm.au.dk/video/mc/riemannian-holonomy-groups-gauge-theory-and-instanton-moduli-spaces/index.html
Andriy Haydys - Higher dimensional gauge theory and Fueter maps
มุมมอง 4195 ปีที่แล้ว
Andriy Haydys - Higher dimensional gauge theory and Fueter maps
Andriy Haydys - Special Kaehler structures with isolated singularities in real dimension two
มุมมอง 805 ปีที่แล้ว
Andriy Haydys - Special Kaehler structures with isolated singularities in real dimension two
Andriy Haydys - Seiberg-Witten monopoles and flat PSL(2,R) connections
มุมมอง 1225 ปีที่แล้ว
Andriy Haydys - Seiberg-Witten monopoles and flat PSL(2,R) connections
Andriy Haydys - G₂ instantons and the Seiberg Witten monopoles
มุมมอง 1545 ปีที่แล้ว
Andriy Haydys - G₂ instantons and the Seiberg Witten monopoles
Andriy Haydys - On degenerations of the Seiberg-Witten monopoles and G₂ instantons
มุมมอง 1275 ปีที่แล้ว
Andriy Haydys - On degenerations of the Seiberg-Witten monopoles and G₂ instantons
Robion Kirby - History of Low Dimension Topology
มุมมอง 5K8 ปีที่แล้ว
Robion Kirby - History of Low Dimension Topology
Don Zagier - Modular forms, periods, and differential equations
มุมมอง 10K8 ปีที่แล้ว
Don Zagier - Modular forms, periods, and differential equations
Robert McCann - A glimpse into the differential geometry and topology of optimal transportation
มุมมอง 9278 ปีที่แล้ว
Robert McCann - A glimpse into the differential geometry and topology of optimal transportation
Mark Norfleet - Hyperbolic Geometry
มุมมอง 2.8K8 ปีที่แล้ว
Mark Norfleet - Hyperbolic Geometry
Curtis McMullen - The Geometry of 3 Manifolds
มุมมอง 7K8 ปีที่แล้ว
Curtis McMullen - The Geometry of 3 Manifolds
Wiles' Theorem on Modular Elliptic Curves Consequences - Henri Darmon
มุมมอง 12K8 ปีที่แล้ว
Wiles' Theorem on Modular Elliptic Curves Consequences - Henri Darmon
Modularity of Mod 5 Representations - Karl Rubin
มุมมอง 8638 ปีที่แล้ว
Modularity of Mod 5 Representations - Karl Rubin
An Extension of Wiles' result - Fred Diamond
มุมมอง 1K8 ปีที่แล้ว
An Extension of Wiles' result - Fred Diamond
Remarks on the History of Fermat's Last Theorem - Michael Rosen
มุมมอง 2.5K8 ปีที่แล้ว
Remarks on the History of Fermat's Last Theorem - Michael Rosen
Non minimal Deformations (the Induction Step) - Ken Ribet
มุมมอง 8438 ปีที่แล้ว
Non minimal Deformations (the Induction Step) - Ken Ribet

ความคิดเห็น

  • @kosttavmalhotra5899
    @kosttavmalhotra5899 5 วันที่ผ่านมา

    great collection

  • @carlorossi2788
    @carlorossi2788 หลายเดือนก่อน

    Ha infinite soluzioni

  • @kuttismile.justawhile455
    @kuttismile.justawhile455 2 หลายเดือนก่อน

    th-cam.com/video/nLGYCdEOblI/w-d-xo.html

  • @SidneySilvaCarnavaleney
    @SidneySilvaCarnavaleney 3 หลายเดือนก่อน

    @SidneySilvaCarnavaleney há 31 minutos To the Clay Institute of Mathematics, what impact would it have if I refuted the "Riemann Hypothesis"? However, the numbers I will mention are not prime, and twin primes do not exist. I have established a Law that must always be respected. This Law states: To be a prime number, it must be divided or factored only with the prime number itself, being unique; from the smallest to the largest, and from the largest to the smallest with exact results for the calculations of each prime number, the numbers that are not prime follow. With a simple (PA) Arithmetic Progression, I arrived at a pattern for prime numbers: let's see what follows: Dear noble friends, Professors, students, acquaintances of the Clay Institute of Mathematics, what impact would it have on the Universe of Mathematics, if I stated that some of the numbers mentioned are not prime? And that Twin Primes do not exist? 2; 19; 41; 59; 61; 79; 101; 139; 179; 181; 199; 239; 241; 281; 359; 401; 419; 421; 439; 461; 479; 499; 521; 541; 599; 601; 619; 641; 659; 661; 701; 719; 739; 761; 821; 839; 859; 881; 919; 941; 1019; 1021; 1039; 1061; 1181; 1201; 1259; 1279; 1301; 1319; 1321; 1361; 1381; 1399; 1439; 1459; 1481; 1499; 1559; 1579; 1601; 1619; 1621; 1699; 1721; 1741; 1759; 1801; 1861; 1879; 1901; 1979;..........

  • @SidneySilvaCarnavaleney
    @SidneySilvaCarnavaleney 3 หลายเดือนก่อน

    @SidneySilvaCarnavaleney há 31 minutos To the Clay Institute of Mathematics, what impact would it have if I refuted the "Riemann Hypothesis"? However, the numbers I will mention are not prime, and twin primes do not exist. I have established a Law that must always be respected. This Law states: To be a prime number, it must be divided or factored only with the prime number itself, being unique; from the smallest to the largest, and from the largest to the smallest with exact results for the calculations of each prime number, the numbers that are not prime follow. With a simple (PA) Arithmetic Progression, I arrived at a pattern for prime numbers: let's see what follows: Dear noble friends, Professors, students, acquaintances of the Clay Institute of Mathematics, what impact would it have on the Universe of Mathematics, if I stated that some of the numbers mentioned are not prime? And that Twin Primes do not exist? 2; 19; 41; 59; 61; 79; 101; 139; 179; 181; 199; 239; 241; 281; 359; 401; 419; 421; 439; 461; 479; 499; 521; 541; 599; 601; 619; 641; 659; 661; 701; 719; 739; 761; 821; 839; 859; 881; 919; 941; 1019; 1021; 1039; 1061; 1181; 1201; 1259; 1279; 1301; 1319; 1321; 1361; 1381; 1399; 1439; 1459; 1481; 1499; 1559; 1579; 1601; 1619; 1621; 1699; 1721; 1741; 1759; 1801; 1861; 1879; 1901; 1979;..........

  • @SidneySilvaCarnavaleney
    @SidneySilvaCarnavaleney 3 หลายเดือนก่อน

    @SidneySilvaCarnavaleney há 31 minutos To the Clay Institute of Mathematics, what impact would it have if I refuted the "Riemann Hypothesis"? However, the numbers I will mention are not prime, and twin primes do not exist. I have established a Law that must always be respected. This Law states: To be a prime number, it must be divided or factored only with the prime number itself, being unique; from the smallest to the largest, and from the largest to the smallest with exact results for the calculations of each prime number, the numbers that are not prime follow. With a simple (PA) Arithmetic Progression, I arrived at a pattern for prime numbers: let's see what follows: Dear noble friends, Professors, students, acquaintances of the Clay Institute of Mathematics, what impact would it have on the Universe of Mathematics, if I stated that some of the numbers mentioned are not prime? And that Twin Primes do not exist? 2; 19; 41; 59; 61; 79; 101; 139; 179; 181; 199; 239; 241; 281; 359; 401; 419; 421; 439; 461; 479; 499; 521; 541; 599; 601; 619; 641; 659; 661; 701; 719; 739; 761; 821; 839; 859; 881; 919; 941; 1019; 1021; 1039; 1061; 1181; 1201; 1259; 1279; 1301; 1319; 1321; 1361; 1381; 1399; 1439; 1459; 1481; 1499; 1559; 1579; 1601; 1619; 1621; 1699; 1721; 1741; 1759; 1801; 1861; 1879; 1901; 1979;..........

  • @SidneySilvaCarnavaleney
    @SidneySilvaCarnavaleney 3 หลายเดือนก่อน

    @SidneySilvaCarnavaleney há 31 minutos To the Clay Institute of Mathematics, what impact would it have if I refuted the "Riemann Hypothesis"? However, the numbers I will mention are not prime, and twin primes do not exist. I have established a Law that must always be respected. This Law states: To be a prime number, it must be divided or factored only with the prime number itself, being unique; from the smallest to the largest, and from the largest to the smallest with exact results for the calculations of each prime number, the numbers that are not prime follow. With a simple (PA) Arithmetic Progression, I arrived at a pattern for prime numbers: let's see what follows: Dear noble friends, Professors, students, acquaintances of the Clay Institute of Mathematics, what impact would it have on the Universe of Mathematics, if I stated that some of the numbers mentioned are not prime? And that Twin Primes do not exist? 2; 19; 41; 59; 61; 79; 101; 139; 179; 181; 199; 239; 241; 281; 359; 401; 419; 421; 439; 461; 479; 499; 521; 541; 599; 601; 619; 641; 659; 661; 701; 719; 739; 761; 821; 839; 859; 881; 919; 941; 1019; 1021; 1039; 1061; 1181; 1201; 1259; 1279; 1301; 1319; 1321; 1361; 1381; 1399; 1439; 1459; 1481; 1499; 1559; 1579; 1601; 1619; 1621; 1699; 1721; 1741; 1759; 1801; 1861; 1879; 1901; 1979;..........

  • @kuttismile.justawhile455
    @kuttismile.justawhile455 3 หลายเดือนก่อน

    th-cam.com/video/ImYnstd2K_Y/w-d-xo.htmlsi=UKyUf46uYZYRX_3x

  • @boriskogan666
    @boriskogan666 3 หลายเดือนก่อน

    i followed all the way up to minute 22. i will be coming back to this video as my prerequisites fill in. set myself a task to understand (i mean really understand) wiles' proof. didn't realize quite the rabbit hole i will be jumping in to. it's been a fun ride so far. looking forward to the journey. subscribed.

  • @eyesyc
    @eyesyc 5 หลายเดือนก่อน

    Where was this lecture held? This is so great

  • @damianojeda938
    @damianojeda938 5 หลายเดือนก่อน

    does n = 2 work because there are two variables being used in the equation? (x and y). would n = 3 work if there were three variables such as "a^3 + b^3 + c^3 = z^3" and likewise any other value for N where there are N variables being added? and if it's true, does that also mean that in the same way that only n = 2 works for 2 variables, does n = 3 only work for 3 variables and no other number of variables? does n = 7 only work when there are 7 variables?

    • @rodrigorodders7173
      @rodrigorodders7173 5 หลายเดือนก่อน

      That was a conjecture by Euler and it was proven wrong a few years later

  • @vector8310
    @vector8310 6 หลายเดือนก่อน

    Im so grateful that the sound quality is adequate.

  • @KipIngram
    @KipIngram 7 หลายเดือนก่อน

    God, the audio is horrible. Couldn't they have gotten a mike up there by him?

  • @Shiro642
    @Shiro642 8 หลายเดือนก่อน

    Must have been an exciting summer !

  • @aziz0x00
    @aziz0x00 10 หลายเดือนก่อน

    Benedict Gross is a great teacher <3, much respect

  • @ewvandenberg
    @ewvandenberg ปีที่แล้ว

    Absolutely beautiful lecture! I wish there were more of Tate’s talks available to watch online.

  • @kilogods
    @kilogods ปีที่แล้ว

    I have a proof that doesn’t fit inside the comment box

  • @kilogods
    @kilogods ปีที่แล้ว

    Thanks for this fantastic lecture!

  • @kuttismile.justawhile455
    @kuttismile.justawhile455 ปีที่แล้ว

    Beal conjuncture proof th-cam.com/video/1q_gTJSq1pc/w-d-xo.htmlsi=eQd_85xaFupL-CMN

  • @bappaichotu
    @bappaichotu ปีที่แล้ว

    Fantastic lecture

  • @ودكوستي-ص5ظ
    @ودكوستي-ص5ظ ปีที่แล้ว

    Look at this link to see simple proof of FERMAT'S Last Theorem

  • @kuttismile.justawhile455
    @kuttismile.justawhile455 ปีที่แล้ว

    I have fermats last theorem simple proof how to publish or how to verify how much that true.

    • @kilogods
      @kilogods ปีที่แล้ว

      You have a proof that doesn’t fit inside the comment box?

    • @kuttismile.justawhile455
      @kuttismile.justawhile455 ปีที่แล้ว

      @@kilogods th-cam.com/video/3fLbsKHIkNY/w-d-xo.htmlsi=ACVFfFRW65BnfVHz

  • @liammcooper
    @liammcooper ปีที่แล้ว

    I was really hoping to get a lecture of Pascal's hexagrammum mysticum; particularly its relation to Pappus

  • @gilberttheisen9270
    @gilberttheisen9270 ปีที่แล้ว

    13/8/2023. Ne pouvant sans cesse me répéter, veuillez vous reporter sur d'autres sites traitant du sujet où j'explique l'EQUATION UNIVERSELLE cachée et FACILE de FERMAT, enfin retrouvée, et la réfutation de sa conjecture. En plus, vous découvrirez que FERMAT s'est inspiré de PYTHAGORE puisque Z²= X² + Y² peut s'étendre à Zpuissance(N) = X² + Y² , +2 <= N < + infini .Depuis plus de 2.500 ans, ni Pythagore, ni aucuns mathématiciens n'ont vu cette merveille mathématique, cette pépite. Pour arriver à FERMAT, il faut avoir l'idée de passer par PYTHAGORE et non s'attaquer directement à la conjecture qui est la face NORD périlleuse de la montée vers la solution qui est difficile comme l'attestent les 129 pages de Monsieur WILES. La solution est tellement inattendue, courte et facile que PERSONNE depuis près de 4 siècles n'a pas trouvé l'astuce de départ du raisonnement de FERMAT, tout le monde cherchant une démonstration compliquée..

  • @brashcrab
    @brashcrab ปีที่แล้ว

    I like your smell....remember today 10th of August

  • @gilberttheisen9270
    @gilberttheisen9270 ปีที่แล้ว

    4/8/2023. Afin de ne pas me répéter sans cesse, veuillez vous reporter sur d'autres sites traitant de ce sujet . Conjecture de FERMAT démontrée avec l'EQUATION UNIVERSELLE et sa jumelle , celle de Pythagore où Z² est égale et étendue à Zpuissance(N) avec 2 <= N < + infini. A noter que depuis plus de 2.500 ans ,ni Pythagore ni aucun mathématicien ne se sont aperçus de cette propriété et merveilleuse étendue de l'exposant à l'infini. Fermat étant un cas similaire. Pour (Z)puissance au cube, l'équation de Pythagore est jumelle de celle de FERMAT.

    • @gilberttheisen9270
      @gilberttheisen9270 ปีที่แล้ว

      21/11/2023. EQUATION UNIVERSELLE cachée mais retrouvée le 5 juin 2022. Zpuissance(N+1) = Xpuissance(N) + Ypuissance(N) Solution de l'EQUATION en 4 lignes. Plus, inutile de continuer. Il y aura TOUJOURS une différence de ""+1"" entre la puissance de Z et celles de X et Y. D'où la conjecture Zpuissance(N) = Xpuissance(N) + Ypuissance(N) est IMPOSSIBLE quelles que soient les puissances jusqu'à l'infini.

  • @fanalysis6734
    @fanalysis6734 ปีที่แล้ว

    He kinda sucks at lecturing

  • @muskduh
    @muskduh ปีที่แล้ว

    thanks for the post

  • @ricardosuarez2707
    @ricardosuarez2707 ปีที่แล้ว

    Love this man’s book on elliptic curves but his lectures are even more precise thank you so much for upload !

  • @omargaber3122
    @omargaber3122 ปีที่แล้ว

    I don't know why there are not many views of these wonderful lectures?

    • @cooking60210
      @cooking60210 ปีที่แล้ว

      Probably because nobody knows what she's talking about

  • @henriktorus
    @henriktorus ปีที่แล้ว

    great lecture, but difficult to hear what he says. And bad video quality as well

  • @francescos7361
    @francescos7361 2 ปีที่แล้ว

    Thanks , obviously , holonomies are important to me , I would agree .

  • @Amir-tn2bm
    @Amir-tn2bm 2 ปีที่แล้ว

    she is always alive

  • @MatUserName
    @MatUserName 2 ปีที่แล้ว

    This is the kind of mathematician that are unable to teach their own work in simple words. No wonder why people are scare with mathematics with such person teaching.

    • @abublahinocuckbloho4539
      @abublahinocuckbloho4539 2 ปีที่แล้ว

      first off modular forms are not simple mathematical objects. second, the guy is presenting research which is well above graduate mathematics. 3rd he is presenting this piece of math to people who well and truly have the prerequisite knowledge to understand what he is talking about. you are like the person who wants quantum mechanics to become immediately transparent to them but have no foundational knowledge in newtonian mechanics.

    • @MatUserName
      @MatUserName 2 ปีที่แล้ว

      @@abublahinocuckbloho4539 you are absolutely correct. A 5minute presentation of what are we presenting is the fundamental. Then I can five into further reading for more transparency. I'm a physicist and many researchers do this mistake of a quick intro of terminology before diving into the kernel.

  • @official_aylin
    @official_aylin 2 ปีที่แล้ว

    جانم

  • @minapourmojib603
    @minapourmojib603 2 ปีที่แล้ว

    💞💞

  • @tgeofrey
    @tgeofrey 2 ปีที่แล้ว

    John Gave me another Full Life

  • @mtb4u
    @mtb4u 2 ปีที่แล้ว

    I love math, and I love the way Tate talks about abelian varieties, it's as if it's completely obvious what's going on.

  • @odinedin8265
    @odinedin8265 2 ปีที่แล้ว

    = THE GREAT! - THE GREATEST!!! Theorem of the 21st century! = !!!!!!!!!!!!!!!!!!!!! "- an equation of the form X**m + Y**n = Z**k , where m != n != k - any integer(unequal "!=") numbers greater than 2 , - INSOLVable! in integers". !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! /- open publication priority of 22/07/2022 / !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! /-Proven by me! minimum-less than 7-10 pp.

  • @robert-skibelo
    @robert-skibelo 2 ปีที่แล้ว

    Ribet is a wonderfully clear and fluent speaker. Even his blackboard writing is clear! Amongst mathematicians talking about Fermat he seems to be quite unique in this respect.

  • @mu.makbarzadeh2831
    @mu.makbarzadeh2831 2 ปีที่แล้ว

    So lovely mathematician!

  • @JackHandelman
    @JackHandelman 2 ปีที่แล้ว

    as a highschooler i can tell you this makes very little sense. I'll be back here when i understand it

  • @P13FY
    @P13FY 3 ปีที่แล้ว

    Thanks for sharing this !

  • @olas1802
    @olas1802 3 ปีที่แล้ว

    Pretty cool stuff.

  • @vinm300
    @vinm300 3 ปีที่แล้ว

    Thanks for this video lecture. Very enlightening.

  • @semraatunkaynak7980
    @semraatunkaynak7980 3 ปีที่แล้ว

    ı cant read

  • @angel-ig
    @angel-ig 3 ปีที่แล้ว

    That feeling when you realize the table of addition is the same as nim-addition... RIP, btw. He was one of the greatest mathematicians of all time and certainly my favourite one.

  • @melik_book5978
    @melik_book5978 3 ปีที่แล้ว

    زیبا ترین زنی که هیچگاه ندیدمش و جهان هم بی بهره ماند

  • @Ал-тайДіЙ
    @Ал-тайДіЙ 3 ปีที่แล้ว

    I proved on 09/14/2016 the ONLY POSSIBLE proof of the Great Fermat's Theorem (Fermata!). I can pronounce the formula for the proof of Fermath's great theorem: 1 - Fermath's great theorem NEVER! and nobody! NOT! HAS BEEN PROVEN !!! 2 - proven! THE ONLY POSSIBLE proof of Fermat's theorem 3 - Fermath's great theorem is proved universally-proven for all numbers 4 - Fermath's great theorem is proven in the requirements of himself! Fermata 1637 y. 5 - Fermath's great theorem proved in 2 pages of a notebook 6 - Fermath's great theorem is proved in the apparatus of Diophantus arithmetic 7 - the proof of the great Fermath theorem, as well as the formulation, is easy for a student of the 5th grade of the school to understand !!! 8 - Me! opened the GREAT! A GREAT Mystery! Fermath's theorem! (not "simple" - "mechanical" proof) !!!!- NO ONE! and NEVER! (except ME! .. of course!) and FOR NOTHING! NOT! will find a valid proof

  • @iconjack
    @iconjack 3 ปีที่แล้ว

    August 1995