- 84
- 14 376
Dr. Azad Rasul
United Kingdom
เข้าร่วมเมื่อ 18 ธ.ค. 2020
Welcome to my channel! I'm Azad Rasul, a Senior Assistant Professor of Remote Sensing. Dive into a wealth of free tutorials on AI, Deep Learning, and Machine Learning, alongside foundational and intermediate concepts in Remote Sensing, R, and Python programming.
Explore our key playlists:
AI, Deep Learning, and Machine Learning: Advanced techniques and applications in these cutting-edge fields.
Python for Researchers: Practical Python programming for data analysis and research.
How to Use R for Research: Essential R techniques for scientific and statistical research.
We emphasize the integration of geospatial technologies (remote sensing and GIS) with programming languages (R and Python) to enhance your research and technical skills.
Explore our key playlists:
AI, Deep Learning, and Machine Learning: Advanced techniques and applications in these cutting-edge fields.
Python for Researchers: Practical Python programming for data analysis and research.
How to Use R for Research: Essential R techniques for scientific and statistical research.
We emphasize the integration of geospatial technologies (remote sensing and GIS) with programming languages (R and Python) to enhance your research and technical skills.
Programming for Scientific Research with Python and R: Introduction
Conquer Scientific Data with Python and R!
www.udemy.com/course/programming-for-scientific-research/?referralCode=6B1CDFAB54BF528832BF
Unleash the power of programming for your research!
This comprehensive, hands-on course equips you with the essential programming skills needed to tackle scientific data analysis and research projects. Whether you're a researcher, student, or simply curious about scientific computing, this course offers a perfect blend of Python and R to empower your scientific journey.
Master the Fundamentals:
Gain a solid understanding of both Python and R programming languages.
Master core programming concepts like variables, data types, control flow, and functions in both Python and R.
Explore the strengths and weaknesses of each language to choose the right tool for your research needs.
Wrangle and Analyze with Confidence:
Grasp essential file handling techniques in Python to manage your scientific data effectively.
Master data manipulation methods in R to organize and prepare your data for analysis.
Leverage powerful libraries like NumPy and SciPy in Python, and core R functionalities to perform statistical calculations crucial for your research.
Visualize Your Findings Clearly:
Craft informative and visually appealing graphs using Matplotlib in Python and ggplot2 in R.
Communicate your research results through compelling data visualizations, including advanced and animated graphs in R.
www.udemy.com/course/programming-for-scientific-research/?referralCode=6B1CDFAB54BF528832BF
Dive into Artificial Intelligence:
Get an introduction to AI and apply deep learning techniques to scientific data using Python and R.
Explore practical applications like processing geospatial data and analyzing scientific datasets with AI.
Real-World Applications:
Apply your programming skills to practical case studies in scientific research.
Tackle real-world scenarios, including climate data analysis and remote sensing indices.
By the end of this course, you'll be able to:
Confidently navigate the world of scientific computing with Python and R.
Clean, manipulate, and analyze your scientific data with ease.
Conduct essential statistical analyses to support your research.
Apply AI techniques to enhance your data analysis capabilities.
Create impactful data visualizations to communicate your findings effectively.
Join us today and start conquering your scientific data with the power of Python and R!
www.udemy.com/course/programming-for-scientific-research/?referralCode=6B1CDFAB54BF528832BF
Unleash the power of programming for your research!
This comprehensive, hands-on course equips you with the essential programming skills needed to tackle scientific data analysis and research projects. Whether you're a researcher, student, or simply curious about scientific computing, this course offers a perfect blend of Python and R to empower your scientific journey.
Master the Fundamentals:
Gain a solid understanding of both Python and R programming languages.
Master core programming concepts like variables, data types, control flow, and functions in both Python and R.
Explore the strengths and weaknesses of each language to choose the right tool for your research needs.
Wrangle and Analyze with Confidence:
Grasp essential file handling techniques in Python to manage your scientific data effectively.
Master data manipulation methods in R to organize and prepare your data for analysis.
Leverage powerful libraries like NumPy and SciPy in Python, and core R functionalities to perform statistical calculations crucial for your research.
Visualize Your Findings Clearly:
Craft informative and visually appealing graphs using Matplotlib in Python and ggplot2 in R.
Communicate your research results through compelling data visualizations, including advanced and animated graphs in R.
www.udemy.com/course/programming-for-scientific-research/?referralCode=6B1CDFAB54BF528832BF
Dive into Artificial Intelligence:
Get an introduction to AI and apply deep learning techniques to scientific data using Python and R.
Explore practical applications like processing geospatial data and analyzing scientific datasets with AI.
Real-World Applications:
Apply your programming skills to practical case studies in scientific research.
Tackle real-world scenarios, including climate data analysis and remote sensing indices.
By the end of this course, you'll be able to:
Confidently navigate the world of scientific computing with Python and R.
Clean, manipulate, and analyze your scientific data with ease.
Conduct essential statistical analyses to support your research.
Apply AI techniques to enhance your data analysis capabilities.
Create impactful data visualizations to communicate your findings effectively.
Join us today and start conquering your scientific data with the power of Python and R!
มุมมอง: 63
วีดีโอ
Master Geospatial AI Transform Data Today
มุมมอง 294 หลายเดือนก่อน
Unlock the transformative power of AI, Deep Learning, and Machine Learning in Geospatial Analysis with this comprehensive course using Python and R. This course: (www.udemy.com/course/ai-for-geospatial-analysis/?referralCode=756925DC2106C34C6DBE) is designed to equip you with the skills and knowledge needed to apply advanced AI techniques to geospatial data, enabling you to solve real-world pro...
Python for Scientific Research: Welcome and Course Overview
มุมมอง 454 หลายเดือนก่อน
Are you looking for a powerful and versatile tool to enhance your research capabilities? This course (www.udemy.com/course/python-for-researchers/?referralCode=886CCF5C552567F1C4E7) is your gateway to mastering Python for scientific research, where you'll learn through real-world examples across various fields. As an Assistant Professor of Remote Sensing and a Senior GBD Collaborator with over ...
Introduction to the Course and Installing R
มุมมอง 214 หลายเดือนก่อน
Are you ready to elevate your research with the power of R programming? This course (www.udemy.com/course/r-for-research/?referralCode=B6DCFDE343F0592EA61A) is designed to take you from the fundamentals to advanced techniques, all while applying real-world examples from diverse research fields. With over 12 years of experience in programming and scientific research, I will guide you through ess...
Harnessing AI and Machine Learning for Geospatial Analysis - Welcome and Course Overview
มุมมอง 614 หลายเดือนก่อน
Unlock the transformative power of AI, Deep Learning, and Machine Learning in Geospatial Analysis with this comprehensive course using Python and R. This course: (www.udemy.com/course/ai-for-geospatial-analysis/?referralCode=756925DC2106C34C6DBE) is designed to equip you with the skills and knowledge needed to apply advanced AI techniques to geospatial data, enabling you to solve real-world pro...
Detecting and Counting Plants Using Computer Vision Techniques
มุมมอง 1054 หลายเดือนก่อน
Welcome to this comprehensive tutorial on automated plant counting using Python! 🌱 In this video, you'll learn how to use advanced techniques for detecting and counting plants in a field using drone imagery, shapefiles, and digital elevation models (DEM). What You'll Learn: Data Loading: How to load and prepare raster data using rasterio and shapefiles with geopandas. Raster Masking: Masking th...
Building a Machine Learning Model for Crop Health Analysis
มุมมอง 564 หลายเดือนก่อน
Welcome to this tutorial on building a machine learning model to analyze crop health using Python. In this video, we will guide you through the complete process of importing and preparing raster and vector data, engineering features, balancing data, and developing a neural network model to classify healthy crops. Topics Covered: Data Import and Preprocessing: Importing necessary libraries inclu...
🌾 Crop Data Analysis: Unlocking Agricultural Insights with Geospatial Data 🌾
มุมมอง 814 หลายเดือนก่อน
🌾 Crop Data Analysis: Unlocking Agricultural Insights with Geospatial Data 🌾 Dive into the world of advanced crop analysis with our comprehensive tutorial! 🚀 🔍 Introduction to Crop Analysis: Discover how Digital Elevation Models (DEMs) and multi-spectral imagery can revolutionize crop monitoring and analysis. 📊 Loading and Processing Data: Master the techniques for loading and processing DEM, D...
Comprehensive Guide to Geospatial Analysis, Machine Learning, and Data Processing in Python - Part5
มุมมอง 915 หลายเดือนก่อน
Welcome to our comprehensive guide on geospatial analysis, machine learning, and data processing using Python! In this tutorial, we cover a wide range of topics, providing you with practical examples and detailed explanations for each section. Whether you're a beginner or an experienced data scientist, this tutorial has something for everyone. Topics Covered: Data Normalization and Feature Extr...
Comprehensive Guide to Geospatial Analysis, Machine Learning, and Data Processing in Python - Part 4
มุมมอง 1285 หลายเดือนก่อน
Welcome to our comprehensive guide on geospatial analysis, machine learning, and data processing using Python! In this tutorial, we cover a wide range of topics, providing you with practical examples and detailed explanations for each section. Whether you're a beginner or an experienced data scientist, this tutorial has something for everyone. Topics Covered: Data Normalization and Feature Extr...
Comprehensive Guide to Geospatial Analysis, Machine Learning, and Data Processing in Python - Part 3
มุมมอง 2085 หลายเดือนก่อน
Welcome to our comprehensive guide on geospatial analysis, machine learning, and data processing using Python! In this tutorial, we cover a wide range of topics, providing you with practical examples and detailed explanations for each section. Whether you're a beginner or an experienced data scientist, this tutorial has something for everyone. Topics Covered: Data Normalization and Feature Extr...
Comprehensive Guide to Geospatial Analysis, Machine Learning, and Data Processing Project: Part2
มุมมอง 2005 หลายเดือนก่อน
Welcome to our comprehensive guide on geospatial analysis, machine learning, and data processing using Python! In this tutorial, we cover a wide range of topics, providing you with practical examples and detailed explanations for each section. Whether you're a beginner or an experienced data scientist, this tutorial has something for everyone. Topics Covered: Data Normalization and Feature Extr...
Comprehensive Guide to Geospatial Analysis, Machine Learning, and Data Processing in Python - Part 1
มุมมอง 1875 หลายเดือนก่อน
Welcome to our comprehensive guide on geospatial analysis, machine learning, and data processing using Python! In this tutorial, we cover a wide range of topics, providing you with practical examples and detailed explanations for each section. Whether you're a beginner or an experienced data scientist, this tutorial has something for everyone. Topics Covered: Data Normalization and Feature Extr...
Implementing a Convolutional Neural Network for Image Classification with PyTorch Using EuroSAT Data
มุมมอง 2205 หลายเดือนก่อน
Welcome to Dr. Azad Rasul's tutorial on implementing a Convolutional Neural Network (CNN) for image classification using PyTorch and the EuroSAT dataset! 📊📸 In this video, we will walk through: Setting up the environment Loading and transforming the EuroSAT dataset Building and training a CNN model using PyTorch Evaluating model performance and visualizing results Key Topics Covered: Setting Se...
Introduction to Machine Learning for Geospatial Data
มุมมอง 1535 หลายเดือนก่อน
Welcome to our video on "Introduction to Machine Learning for Geospatial Data"! 🌍📊 In this video, we'll cover the basics of machine learning and its applications in geospatial analysis. Whether you're new to the field or looking to expand your knowledge, this tutorial will provide a solid foundation. What You’ll Learn: What is Machine Learning? Understand the key concepts of machine learning, i...
Introduction to Google Colab: A Beginner's Guide
มุมมอง 345 หลายเดือนก่อน
Introduction to Google Colab: A Beginner's Guide
Machine Learning: Classifying Complex Data
มุมมอง 966 หลายเดือนก่อน
Machine Learning: Classifying Complex Data
Unlock the Power of Satellite Data: Calculating Remote Sensing Indices in Python
มุมมอง 1167 หลายเดือนก่อน
Unlock the Power of Satellite Data: Calculating Remote Sensing Indices in Python
Unlock the Power of Zonal Statistics with Python! 🌍📊
มุมมอง 927 หลายเดือนก่อน
Unlock the Power of Zonal Statistics with Python! 🌍📊
Enhance the accuracy of crop classification in Google Earth Engine using the Random Forest algorithm
มุมมอง 2498 หลายเดือนก่อน
Enhance the accuracy of crop classification in Google Earth Engine using the Random Forest algorithm
Introduction to Deep Learning in R Programming - Part 2
มุมมอง 1228 หลายเดือนก่อน
Introduction to Deep Learning in R Programming - Part 2
Introduction to Deep Learning in R Programming - Part 1
มุมมอง 3378 หลายเดือนก่อน
Introduction to Deep Learning in R Programming - Part 1
Import annual climatic data in R Programming
มุมมอง 538 หลายเดือนก่อน
Import annual climatic data in R Programming
Climate Data Analysis Using Python: Part 4
มุมมอง 2298 หลายเดือนก่อน
Climate Data Analysis Using Python: Part 4
Climate Data Analysis Using Python: Part 1
มุมมอง 6878 หลายเดือนก่อน
Climate Data Analysis Using Python: Part 1
Climate Data Analysis Using Python: Part 2
มุมมอง 3478 หลายเดือนก่อน
Climate Data Analysis Using Python: Part 2
Climate Data Analysis Using Python: Part 3
มุมมอง 1978 หลายเดือนก่อน
Climate Data Analysis Using Python: Part 3
Wind Rose Plots for Different Time Periods in R
มุมมอง 2338 หลายเดือนก่อน
Wind Rose Plots for Different Time Periods in R
Case Study 1 Part 2: 🚀 Unlock the Secrets of LAI and LST Trends in China and India! 🌏📈
มุมมอง 228 หลายเดือนก่อน
Case Study 1 Part 2: 🚀 Unlock the Secrets of LAI and LST Trends in China and India! 🌏📈
Hi Dr Azad, did you manually select known areas of wheat and barley for the test data ?
Yes, we manually selected known areas of wheat and barley for the test data. However, if you have ground truth data available, you can upload it to Google Earth Engine (GEE) and use it for training and validation. This approach allows you to leverage your existing ground truth data effectively in the analysis.
Hi Dr. Azad Rasul, thank you very much for the great tutorial! For Model 2 which has one more layer than Model 1, I wonder why its accuracy is lower than Model 1?
The reason Model 2, which has an additional layer compared to Model 1, might show a lower accuracy could be due to several factors related to overfitting, underfitting, or optimization challenges.
@@AzadRasul1977 Thank you.
www.udemy.com/course/programming-for-scientific-research/?referralCode=6B1CDFAB54BF528832BF
www.udemy.com/course/ai-for-geospatial-analysis/?referralCode=756925DC2106C34C6DBE
❤❤❤❤❤دەستت خۆشبێت کاک دکتۆر، کاک دکتۆر هەتا چەند Ai جێگای متمانەیە؟
سلاو مامۆستا. کۆمەڵێک میتۆدی زانستی جیاوازن و بەکارهێنان و ئەکوڕەسی (متمانەی خیاوازیان هەیە)
@@AzadRasul1977 ببوورە کاک دکتۆر دەتوانین Ai وەک سەرچاوە بەکاربهێنین
www.udemy.com/course/python-for-researchers/?referralCode=886CCF5C552567F1C4E7
www.udemy.com/course/r-for-research/?referralCode=B6DCFDE343F0592EA61A
www.udemy.com/course/ai-for-geospatial-analysis/?referralCode=756925DC2106C34C6DBE
❤❤❤❤❤❤❤ دەستت خۆشبێت کاک دکتۆر گوڵ
دەستی ئێوەش خۆش م گیان
The link to the code on my GitHub repository is: github.com/Azad77/Detecting-and-Counting-Plants-Using-Computer-Vision-Techniques
دەستت خۆشبێت کاک دکتۆر❤❤❤❤❤❤
زۆر سوپاس برا دەستی ئێوەش خۆش
❤❤❤❤❤❤دەستت خۆشبێت کاک دکتۆر
دەست خۆش بۆ هاندانی ئێوە
The link to the code on my GitHub Repo: github.com/Azad77/Modeling-and-Predicting-Crop-Health-Using-RS-Data-and-Neural-Networks/tree/main
Wonderful Dr. Azad keep it going.🙏
Thank you for your positive comment!
A link to the code is: github.com/Azad77/crop-data-analysis/blob/main/Crop%20Data%20Analysis.ipynb
Thank you!
You are welcome!
Dastt xosh dktor
zor supas mamosta
The code and data for this tutorial are available in my GitHub repository at: github.com/Azad77/ML_Geospatial_Analysis.
The code and data for this tutorial are available in my GitHub repository at: github.com/Azad77/ML_Geospatial_Analysis.
The code and data for this tutorial are available in my GitHub repository at: github.com/Azad77/ML_Geospatial_Analysis.
The code and data for this tutorial are available in my GitHub repository at: github.com/Azad77/ML_Geospatial_Analysis.
The code and data for this tutorial are available in my GitHub repository at: github.com/Azad77/ML_Geospatial_Analysis.
❤دەستت خۆشبێت کاک دکتۆر❤❤❤
دەستی ئێوەش خۆش
❤❤❤❤❤❤❤دەستت خۆشبێت کاک دکتۆر
زۆر سوپاس مامۆستا مستەفا
❤❤❤❤❤❤❤ دەستخۆشبێت کاک دکتۆری گوڵ
زۆر سوپاس مامۆستا گیان
Code Repository: github.com/Azad77/LULC_CNN_EuroSAT/blob/main/CNNs_LULC_Classification_EuroSAT_Azad_Rasul.ipynb
دەستتخۆشبێت کاک دکتۆری گوڵ
زۆر سوپاس مامۆستا
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
❤❤❤❤❤❤❤❤ دەستت خۆشبێت کاک دکتۆری گوڵ
زۆر سوپاس مامۆستا
❤❤❤❤❤❤❤❤دەستت خۆشبێت کاک دکتۆر بەڕێز و گوڵ
دەست خۆش لۆ هاندانت
www.udemy.com/course/ai-for-geospatial-analysis/?referralCode=756925DC2106C34C6DBE
www.udemy.com/course/ai-for-geospatial-analysis/?referralCode=756925DC2106C34C6DBE
I loved all the videos here dear
Thanks so much, diasporatube6283!
Great Video! ❤
Thank you for your comment!
This is the valuable information, thank you so much Dr. Azad 🙏
You are welcome!
Wonderful 👍
Great Dr. Azad 🙏
Thank you for your comment
Thank you so much Dr. Azad for this valuable information, big respect 🙏
smartrs.uk/comparison-of-different-ml-classifiers-on-synthetic-dataset
# Importing necessary libraries import matplotlib.pyplot as plt # Library for plotting import numpy as np # Library for numerical operations from sklearn.ensemble import RandomForestClassifier from matplotlib.colors import ListedColormap # For customizing colormap from sklearn.datasets import make_classification # For generating synthetic datasets from sklearn.inspection import DecisionBoundaryDisplay # For displaying decision boundaries from sklearn.model_selection import train_test_split # For splitting dataset into train and test sets from sklearn.neighbors import KNeighborsClassifier # k-Nearest Neighbors classifier from sklearn.neural_network import MLPClassifier # Multi-layer Perceptron classifier from sklearn.pipeline import make_pipeline # For creating a pipeline of transformers and estimators from sklearn.preprocessing import StandardScaler # For standardizing features from sklearn.tree import DecisionTreeClassifier # Decision Tree classifier # List of classifier names names = [ "Nearest Neighbors", "Decision Tree", "Random Forest", "Neural Net" ] # List of classifiers classifiers = [ KNeighborsClassifier(3), # k-Nearest Neighbors with k=3 DecisionTreeClassifier(max_depth=5, random_state=42), # Decision Tree Classifier with max depth of 5 RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1, random_state=42), # Random Forest Classifier MLPClassifier(alpha=1, max_iter=1000, random_state=42) # Multi-layer Perceptron Classifier ] # Generating a complex synthetic dataset X, y = make_classification( n_samples=1000, # Number of samples in the dataset n_features=20, # Number of features in the dataset n_redundant=2, # Number of redundant features n_informative=10, # Number of informative features n_clusters_per_class=2, # Number of clusters per class random_state=1 # Random seed for reproducibility ) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) # Adding noise to the dataset # Using only the first two features for visualization X = X[:, :2] # Splitting the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.4, random_state=42 ) # Creating a figure for plotting figure = plt.figure(figsize=(18, 6)) x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 # Plotting the dataset cm = plt.cm.RdBu cm_bright = ListedColormap(["#FF0000", "#0000FF"]) ax = plt.subplot(1, len(classifiers) + 1, 1) ax.set_title("Input data") ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k") ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k") ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) # Iterate over classifiers for i, (name, clf) in enumerate(zip(names, classifiers), start=2): ax = plt.subplot(1, len(classifiers) + 1, i) # Constructing a pipeline with standard scaler and the classifier clf = make_pipeline(StandardScaler(), clf) # Fitting the classifier clf.fit(X_train, y_train) # Calculating the accuracy score score = clf.score(X_test, y_test) # Plotting decision boundaries DecisionBoundaryDisplay.from_estimator( clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5 ) # Plotting training and testing points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k") ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors="k", alpha=0.6) ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) # Adding accuracy score as text on each subplot ax.text(x_max - 0.3, y_min + 0.3, ("%.2f" % score).lstrip("0"), size=15, horizontalalignment="right") # Adjusting layout and displaying the plot plt.tight_layout() plt.show()
سووپاسی ماندووبوونەکانتم کاک دکتۆر دەستت خۆشبێت ❤❤
زۆر سوپاس م مستەفای بەڕێز
Here is the link to the code on my blog: smartrs.uk/calculating-common-remote-sensing-indices-in-python.
❤❤❤
دەستت خۆشبێت کاک دکتۆری گوڵ خودا خێرت بنووسێت
زۆر سوپاس لۆ کۆمێنتەکەت م مستەفا
# !pip install pylst # Import the calculate_zs function from the zonstat module in the pylst.spatial_analysis package from pylst.spatial_analysis.zonstat import calculate_zs # Define the path to the shapefile containing the administrative boundaries (in this case, Erbil_Admi_3.shp) shapefile_path = "D:\\GeoAI_Master_2024\\GeoAI_Master_2024_Lecture2_Geospatial_Data_in_Python\data\\Erbil_Shapefile\\Erbil_Admi_3.shp" # Define the path to the raster file (in this case, Chirps_Erbil.tif) for spatial analysis raster_path = "D:\\GeoAI_Master_2024\\GeoAI_Master_2024_Lecture2_Geospatial_Data_in_Python\data\\Chirps_Erbil.tif" # Call the calculate_zs function, passing the shapefile and raster paths as arguments # This function performs zone-based statistics, calculating values for each zone in the shapefile from the corresponding raster data df = calculate_zs(shapefile_path, raster_path) # Print the resulting DataFrame that contains the calculated zone-based statistics print(df) # Save Result of df.to_csv("zonal_stats_chirps.csv", index=True)
❤❤❤❤❤❤❤
دەستت خۆشبێت کاک دکتۆری گوڵ
زۆر سوپاس مامۆستا گیان
❤❤دەستت خۆشبێت کاک دکتۆر
زۆر سوپاس مامۆستا مستەفا
Here is the link to the code on my blog:smartrs.hashnode.dev/enhance-the-accuracy-of-crop-classification-in-google-earth-engine-using-the-random-forest
hashnode.com/edit/clvqcgh9t000709jnc890azs1