Jini ASI Int'l school
Jini ASI Int'l school
  • 4 756
  • 513 455
우주학개론 제 23강(우주의 궁극의 원리를 찾아서 - 영어더빙, 한국어 해설)
별들이 불을 밝히는 광활한 우주 속에서,
진실을 향한 우리의 탐험은 시작된다.
우주장론 이해를 비추며 우주의 춤을 드러내고,
우리는 그 미스터리를 풀기 위해 기회를 잡는다.
통일장이론, 밝은 등불처럼,
힘과 빛의 영역을 통과해 우리를 안내한다.
보이지 않는 차원에서 진동하는 끈들,
우리는 기적이 모이는 곳으로 여행한다.
M-이론의 영역, 열한 차원의 넓은 공간,
비밀이 숨어 있는 현실의 뜨거운 수단.
어둠 속과 천상의 노래 속에서,
우리는 우주가 시작되는 곳을 찾는다.
우주의 심포니 속에서, 우리는 자리를 찾는다.
은하수 사이, 끝없는 우아함 속에서.
매 발견마다, 우리의 이해가 깊어진다.
지식이 흘러가는 우주의 발레 속에서.
오늘은 우주학개론 제 23번째 시간으로 우주의 궁극의 원리를 찾아서 편으로 우주장론 통일장론 끈이론 양자중력론 M-이론을 소개해 드립니다. 구독 좋아요는 영상제작에 큰힘이 됩니다.
우주장론이란 무엇인가?
우주장론은 우주의 모든 힘을 하나의 근본적인 힘으로 통합하려는 이론입니다. 이 이론은 아직 초기 단계이지만, 만약 성공한다면 우주에 대한 우리의 이해를 근본적으로 바꿀 수 있습니다.이는 물리학의 가장 웅장한 목표 중 하나로, 성공한다면 우리는 우주의 근본적인 작동 방식을 이해하게 될 것입니다.
주요 개념
장: 공간과 시간에 걸쳐 존재하는 에너지의 일종입니다. 빛, 전기, 자기 등이 그 예입니다.
양자역학: 아원자 입자의 행동을 설명하는 이론입니다.
일반 상대성 이론: 중력을 설명하는 이론입니다.
우주장론의 목표
모든 힘을 하나의 장으로 통합하는 것
우주의 기원과 진화를 설명하는 것
암흑 물질과 암흑 에너지의 성질을 밝히는 것
주요 유형
끈 이론: 10차원의 공간에서 진동하는 끈으로 모든 힘을 설명하려는 이론입니다.
M-이론: 11차원의 공간에서 진동하는 막으로 모든 힘을 설명하려는 이론입니다.
양자 중력 이론: 양자역학과 일반 상대성 이론을 통합하려는 이론입니다.
현재 상황
아직 초기 단계이며, 많은 연구가 필요합니다.
실험적 검증이 어렵습니다.
여러 유형의 우주장론이 존재하며, 어떤 것이 옳은지 아직 알 수 없습니다.
미래 전망
우주에 대한 우리의 이해를 근본적으로 바꿀 수 있는 잠재력을 가지고 있습니다.
암흑 물질과 암흑 에너지의 성질을 밝히는 데 도움이 될 수 있습니다.
새로운 기술 개발로 이어질 수 있습니다.
우주장론과 통일장론 비교 분석
1. 목표
우주장론은 우주의 모든 힘과 기원을 설명하는 이론입니다. 이는 궁극적으로 모든 자연 현상을 하나의 이론으로 설명하는 것을 목표로 합니다. 우주론은 다음과 같은 질문에 답하려고 합니다.
우주는 어떻게 시작되었는가?
우주는 어떻게 진화하는가?
우주는 어떻게 구성되어 있는가?
우주에는 어떤 힘이 존재하는가?
통일장론은 전자기력, 약핵력, 강핵력, 중력의 4가지 힘을 하나의 이론으로 통합하는 것을 목표로 합니다. 현재 이 4가지 힘은 서로 다른 법칙으로 설명되고 있습니다. 통일장론은 이 4가지 힘을 하나의 근본적인 힘으로 설명하려고 합니다.
2. 범위
우주장론은 우주의 모든 힘과 기원을 다루는 더 포괄적인 이론입니다. 이는 빅뱅 이론, 암흑 물질, 암흑 에너지, 양자 중력 등 다양한 주제를 포함합니다.
통일장론은 4가지 힘에 집중하는 더 제한적인 이론입니다. 이는 전기약력 통일 이론, 대통일 이론, 양자 중력 이론 등 다양한 유형이 있지만, 모두 4가지 힘을 통합하는 데 초점을 맞춥니다.
3. 주요 유형
우주장론의 주요 유형은 다음과 같습니다.
끈 이론: 10차원의 공간에서 진동하는 끈으로 모든 힘을 설명하려는 이론입니다.
M-이론: 11차원의 공간에서 진동하는 막으로 모든 힘을 설명하려는 이론입니다.
양자 중력 이론: 양자역학과 일반 상대성 이론을 통합하려는 이론입니다.
통일장론의 주요 유형은 다음과 같습니다.
전기약력 통일 이론: 전자기력과 약핵력을 하나의 이론으로 통합하는 이론입니다.
대통일 이론: 전기약력 통일 이론에 강핵력을 포함하는 이론입니다.
양자 중력 이론: 양자역학과 일반 상대성 이론을 통합하여 모든 힘을 하나의 이론으로 설명하려는 이론입니다.
4. 현재 상황
우주장론은 아직 초기 단계이며, 많은 연구가 필요합니다. 끈 이론, M-이론, 양자 중력 이론 등 다양한 유형의 우주장론이 있지만, 아직 어떤 이론이 옳은지 알 수 없습니다.
통일장론은 일부 진전이 있었지만, 아직 완성되지 않았습니다. 전기약력 통일 이론은 성공적으로 개발되었지만, 강핵력을 포함하는 대통일 이론은 아직 개발되지 않았습니다. 양자 중력 이론은 모든 힘을 통합하려는 최종적인 목표이지만, 아직 초기 단계에 있습니다.
5. 미래 전망
우주장론은 우주에 대한 우리의 이해를 근본적으로 바꿀 수 있는 잠재력을 가지고 있습니다. 만약 성공한다면, 우주의 모든 힘과 기원을 하나의 이론으로 설명할 수 있을 것입니다.
통일장론은 물리학의 근본적인 법칙에 대한 더 깊은 이해를 제공할 수 있습니다. 만약 성공한다면, 4가지 힘을 하나의 이론으로 통합하여 물리학의 법칙을 더욱 단순하게 만들 수 있을 것입니다.
양자 중력 이론이란 무엇일까?
양자 중력 이론은 양자 역학과 일반 상대성 이론을 통합하여 중력을 양자화하는 이론입니다. 양자 역학은 아원자 입자의 행동을 설명하는 이론이고, 일반 상대성 이론은 중력을 설명하는 이론입니다. 양자 중력 이론은 이 두 이론을 통합하여 플랑크 규모(10^-35m)에서도 유효한 중력의 이론을 만들려고 합니다.
양자 중력 이론의 필요성
양자 역학과 일반 상대성 이론은 각각 매우 성공적인 이론이지만, 서로 호환되지 않습니다. 양자 역학은 불연속적인 양자화를 사용하는 반면, 일반 상대성 이론은 연속적인 기하학을 사용합니다. 플랑크 규모에서는 이 두 이론의 차이가 크게 나타나서 서로 모순됩니다. 따라서 양자 중력 이론은 이 두 이론을 통합하여 플랑크 규모에서도 유효한 중력의 이론을 만들 필요가 있습니다.
양자 중력 이론의 주요 유형
양자 중력 이론에는 여러 유형이 있으며, 그 중 대표적인 유형은 다음과 같습니다.
끈 이론: 10차원의 공간에서 진동하는 끈으로 모든 힘을 설명하려는 이론입니다.
M-이론: 11차원의 공간에서 진동하는 막으로 모든 힘을 설명하려는 이론입니다.
루프 양자 중력: 시공간을 스핀 네트워크로 표현하고 양자화하는 이론입니다.
양자 기하학: 시공간 자체를 양자화하는 이론입니다.
양자 중력 이론의 현재 상황
양자 중력 이론은 아직 초기 단계이며, 많은 연구가 필요합니다. 각 유형의 이론은 장점과 단점을 가지고 있으며, 아직 어떤 이론이 옳은지 알 수 없습니다.
양자 중력 이론의 미래 전망
양자 중력 이론은 물리학의 가장 중요한 미해결 문제 중 하나입니다. 만약 성공한다면, 중력의 본질을 이해하고 우주의 기원과 진화를 설명하는 데 큰 도움이 될 것입니다.
끈 이론에서 중력 설명
끈 이론에서 중력은 닫힌 끈의 진동으로 설명됩니다. 다른 힘들은 열린 끈의 진동으로 설명됩니다. 끈 이론에서 1차원 끈은 10차원 공간에서 진동하며, 이 진동 모드에 따라 다양한 입자가 생성됩니다.
만약 끈이 특정한 진동 모드를 가진다면, 그 끈은 중력자로 변합니다. 중력자는 중력을 매개하는 입자입니다. 끈 이론에서는 중력자의 질량이 0이라고 예측합니다. 이는 일반 상대성 이론과 일치합니다.
끈 이론은 아직 초기 단계이지만, 중력을 포함한 모든 힘을 하나의 이론으로 설명할 수 있는 가능성을 보여주고 있습니다. 끈 이론은 또한 우주의 추가 차원을 설명할 수 있습니다.
끈 이론에서 중력 설명의 주요 특징
중력은 닫힌 끈의 진동으로 설명됩니다.
다른 힘들은 열린 끈의 진동으로 설명됩니다.
끈은 10차원 공간에서 진동합니다.
끈 이론은 중력자의 질량이 0이라고 예측합니다.
끈 이론은 모든 힘을 하나의 이론으로 설명할 수 있는 가능성을 보여줍니다.
끈 이론은 우주의 추가 차원을 설명할 수 있습니다.
끈 이론의 장점
모든 힘을 하나의 이론으로 설명할 수 있는 가능성
우주의 추가 차원을 설명할 수 있는 가능성
양자 중력 이론의 가능성
끈 이론의 단점
아직 초기 단계
실험적으로 검증하기 어렵다
많은 끈 이론 모델이 존재하며, 어떤 모델이 옳은지 알 수 없다
끈 이론에서 중력파와 중력장 설명
끈 이론에서 중력파는 끈의 진동으로 인해 발생하는 시공간의 곡률 변화로 설명됩니다. 끈이 진동하면 시공간이 휘어지고, 이 휘어짐이 중력파로 전파됩니다. 중력파는 빛의 속도로 전파되며, 질량이 있는 모든 물체에 영향을 미칩니다.
중력장은 끈의 진동으로 인해 발생하는 시공간의 곡률 자체로 설명됩니다. 끈이 진동하면 시공간이 휘어지고, 이 휘어진 시공간이 중력장을 형성합니다. 중력장은 질량이 있는 모든 물체에 영향을 미치며, 물체의 이동 경로를 바꿉니다.
끈 이론에서 중력파와 중력장 설명의 주요 특징
중력파는 끈의 진동으로 인해 발생하는 시공간의 곡률 변화입니다.
중력장은 끈의 진동으로 인해 발생하는 시공간의 곡률 자체입니다.
중력파는 빛의 속도로 전파됩니다.
중력장은 질량이 있는 모든 물체에 영향을 미칩니다.
중력장은 물체의 이동 경로를 바꿉니다.
끈 이론과 중력파 관측
끈 이론은 LIGO와 Virgo와 같은 중력파 관측소에서 관측된 중력파를 설명하는 데 도움이 될 수 있습니다. 끈 이론은 다양한 종류의 중력파를 예측하며, 이는 중력파 관측 결과와 비교될 수 있습니다.
끈 이론과 중력장
끈 이론은 블랙홀과 같은 강한 중력장을 가진 물체를 설명하는 데 도움이 될 수 있습니다. 끈 이론은 블랙홀의 사건 지평선과 특이점을 설명할 수 있으며, 이는 일반 상대성 이론으로는 설명할 수 없는 것입니다.
มุมมอง: 2

วีดีโอ

생활 영어 초보 패턴 100
มุมมอง 1220 ชั่วโมงที่ผ่านมา
생활 영어 초보 패턴 100
생활 영어 왕초보 200문장 (미국인 7세 수준)
มุมมอง 292 ชั่วโมงที่ผ่านมา
생활 영어 왕초보 200문장 (미국인 7세 수준)
생활 영어 Easy Ⅳ
มุมมอง 154 ชั่วโมงที่ผ่านมา
생활 영어 Easy Ⅳ
지구의 심장박동, 슈만 공명: 흥미진진한 이야기 속으로.
มุมมอง 134 ชั่วโมงที่ผ่านมา
지구의 심장박동, 슈만 공명: 흥미진진한 이야기 속으로.
생활 영어 Easy Ⅲ
มุมมอง 404 ชั่วโมงที่ผ่านมา
생활 영어 Easy Ⅲ
생활 영어 Easy Ⅱ
มุมมอง 274 ชั่วโมงที่ผ่านมา
생활 영어 Easy Ⅱ
생활 영어 Easy Ⅰ
มุมมอง 877 ชั่วโมงที่ผ่านมา
생활 영어 Easy Ⅰ
M-이론: 11차원의 미스터리, 우주의 모든 것을 설명할 수 있을까?
มุมมอง 1829 ชั่วโมงที่ผ่านมา
M-이론: 11차원의 미스터리, 우주의 모든 것을 설명할 수 있을까?
끈 이론: 10차원의 미지의 세계를 향한 흥미진진한 여정.
มุมมอง 429 ชั่วโมงที่ผ่านมา
끈 이론: 10차원의 미지의 세계를 향한 흥미진진한 여정.
툰드라의 미스터리한 크레이터: 그 정체는 무엇일까?
มุมมอง 1.1K9 ชั่วโมงที่ผ่านมา
툰드라의 미스터리한 크레이터: 그 정체는 무엇일까?
신비로운 문명, 마야: 흥망성쇠의 역사를 넘어
มุมมอง 22212 ชั่วโมงที่ผ่านมา
신비로운 문명, 마야: 흥망성쇠의 역사를 넘어
Moai Statues of Easter Island: The Mysterious Legacy of an Ancient Civilization
มุมมอง 2312 ชั่วโมงที่ผ่านมา
Moai Statues of Easter Island: The Mysterious Legacy of an Ancient Civilization
Stonehenge: The Unsolved Enigma of Human History
มุมมอง 2112 ชั่วโมงที่ผ่านมา
Stonehenge: The Unsolved Enigma of Human History
The Mystery of the Roanoke Colony: A Perpetual Disappearance in History
มุมมอง 3812 ชั่วโมงที่ผ่านมา
The Mystery of the Roanoke Colony: A Perpetual Disappearance in History
한니발 전쟁: 로마와 카르타고의 충돌, 제2차 포에니 전쟁 (기원전 218-201년)
มุมมอง 21312 ชั่วโมงที่ผ่านมา
한니발 전쟁: 로마와 카르타고의 충돌, 제2차 포에니 전쟁 (기원전 218-201년)
우주는 왜 물질로 가득 차 있을까요?
มุมมอง 7116 ชั่วโมงที่ผ่านมา
우주는 왜 물질로 가득 차 있을까요?
우주학개론 제 22강 우주의 힘의 근원과 이론편 제 2부
มุมมอง 1919 ชั่วโมงที่ผ่านมา
우주학개론 제 22강 우주의 힘의 근원과 이론편 제 2부
액시온: 우주의 숨겨진 퍼즐 조각.
มุมมอง 8121 ชั่วโมงที่ผ่านมา
액시온: 우주의 숨겨진 퍼즐 조각.
WIMP 이론: 암흑 물질의 비밀을 푸는 열쇠인가?
มุมมอง 69วันที่ผ่านมา
WIMP 이론: 암흑 물질의 비밀을 푸는 열쇠인가?
양자장의 만남: 새로운 원자의 탄생과 상호작용의 신비
มุมมอง 6214 วันที่ผ่านมา
양자장의 만남: 새로운 원자의 탄생과 상호작용의 신비
우주의 오케스트라: 양자장론의 심오한 비밀을 탐구하다
มุมมอง 12614 วันที่ผ่านมา
우주의 오케스트라: 양자장론의 심오한 비밀을 탐구하다
알래스카: 길들여지지 않은 황야와 장엄한 아름다움이 있는 땅
มุมมอง 5314 วันที่ผ่านมา
알래스카: 길들여지지 않은 황야와 장엄한 아름다움이 있는 땅
"앨라배마: 남부의 매력과 역사의 심장"
มุมมอง 3214 วันที่ผ่านมา
"앨라배마: 남부의 매력과 역사의 심장"
Muang Tham: Whispers of the Mysterious Cave City
มุมมอง 1314 วันที่ผ่านมา
Muang Tham: Whispers of the Mysterious Cave City
로마 공화정의 수립: 왕정에서 공화정으로의 전환
มุมมอง 3114 วันที่ผ่านมา
로마 공화정의 수립: 왕정에서 공화정으로의 전환
나스카 라인: 미스터리로 가득한 사막의 거대 그림
มุมมอง 9314 วันที่ผ่านมา
나스카 라인: 미스터리로 가득한 사막의 거대 그림
자연 과학 영어 기초 Ⅰ
มุมมอง 2514 วันที่ผ่านมา
자연 과학 영어 기초 Ⅰ
아틀란티스, 영원한 미스터리의 섬
มุมมอง 9114 วันที่ผ่านมา
아틀란티스, 영원한 미스터리의 섬
우주학 개론 제 21강 (우주를 움직이는 근원적인 힘과 이론 Ⅰ- 영어더빙, 한국어 자막)
มุมมอง 3914 วันที่ผ่านมา
우주학 개론 제 21강 (우주를 움직이는 근원적인 힘과 이론 Ⅰ- 영어더빙, 한국어 자막)

ความคิดเห็น

  • @JiniAIRon
    @JiniAIRon ชั่วโมงที่ผ่านมา

    스티븐 호킹 박사와 레너드 물로디노프가 공동 저술한 '위대한 설계’에서는 우주에 대한 과학적 지식의 역사를 검토하고 11차원 M-이론을 설명합니다. M-이론은 일련의 중첩된 이론들(스트링 이론을 포함)의 집합으로, 양자 물리학의 많은 (하지만 모든 것은 아닌) 빈 칸을 채워줍니다. 이 집합은 '대일원 필드 이론’이라고도 알려져 있습니다. 이 책의 중심 주장은 양자역학의 이론과 상대성 이론이 함께 우리에게 우주가 어떻게 아무것도 없는 상태에서 형성되었는지를 이해하는 데 도움이 된다는 것입니다. 저자들은 다음과 같이 씁니다: “중력과 같은 법칙이 있기 때문에, 우주는 아무것도 없는 상태에서 스스로를 창조할 수 있고, 실제로 그렇게 될 것입니다. 자발적인 창조는 아무것도 없는 대신 무언가가 있는 이유, 우주가 존재하는 이유, 우리가 존재하는 이유입니다. 우주를 시작하게 하기 위해 신을 부르는 것은 필요하지 않습니다.” - Stephen Hawking and Leonard Mlodinow, The Grand Design, 2010 이렇게 볼 때, M-이론은 우리가 우주의 기원과 구조를 이해하는 데 중요한 도구입니다. 이는 우리가 우주의 복잡성을 설명하고 예측하는 데 도움이 되는 수학적 프레임워크를 제공합니다. 이론은 아직 완전히 검증되지 않았지만, 많은 물리학자들이 이것이 우리가 '모든 것의 이론’을 찾는 데 중요한 단계라고 믿고 있습니다. M-이론은 5개의 서로 다른 스트링 이론을 통합하는 이론으로, 이 이론들은 모두 10차원에서 작동합니다. 그러나 M-이론은 11차원에서 작동하며, 이 추가 차원은 이론이 더욱 일반화되고 통합될 수 있게 합니다. 이 이론은 우리가 우주의 기본적인 구조와 원리를 이해하는 데 도움이 됩니다. M-이론은 아직 완전히 이해되지 않았지만, 이 이론이 제공하는 통찰력은 우리가 우주를 이해하는 방식에 광범위한 영향을 미칠 수 있습니다. 이 이론은 우리가 우주의 기원과 진화, 그리고 우리가 존재하는 이유에 대한 질문에 대한 답을 찾는 데 도움이 될 수 있습니다. 이 이론은 또한 우리가 물리학의 근본적인 법칙을 이해하는 방식에 영향을 미칠 수 있습니다. 어둠의 신비로움을 탐험하며, 우주의 미지로 나아가는 길을 걷자. 우주장론이 우리에게 말해줄 것, 통일장이론이 보여줄 길, 끈이론의 진동으로 우리는 춤추며, M-이론의 11차원으로 향하리라. 우주의 비밀을 풀어가는 여정은, 우리의 마음을 더욱 황홀하게 만들 것이다. 끝까지 시청해 주셔서 감사합니다.

  • @6206-kv6pk
    @6206-kv6pk 2 วันที่ผ่านมา

  • @user-hu4sj5zd1i
    @user-hu4sj5zd1i 2 วันที่ผ่านมา

    그림 있으니 좋네요

  • @JiniAIRon
    @JiniAIRon 4 วันที่ผ่านมา

    **The Importance of Tundra Crater Research: Clues for the Future.** With further research and observation, we may one day unravel the mystery of the tundra craters. This would allow us to deepen our understanding of Earth's environmental changes and gain critical insights into predicting future climate change. The study of tundra craters is not just about satisfying curiosity; it is a vital task for the future of humanity. In solving this mystery, we may find the key to protecting the future of our planet and humanity. **Tundra craters showcase the awe-inspiring mysteries of nature and the boundless potential of science. These unresolved enigmas fuel our curiosity and ignite our drive to explore. Through the study of tundra craters, we are reminded of humanity's relentless efforts to uncover the secrets of nature and the universe. We look forward to the day when the tireless work of scientists and the advancement of new technologies finally unlock this mystery, revealing the hidden secrets of nature.**

  • @sarangpark158
    @sarangpark158 5 วันที่ผ่านมา

    우우우우우우우 ㄹ오ㅗ ㅠ ㅎ ㅓㅕㅎ류 츄ㅕ 퓨

  • @turbiclub
    @turbiclub 5 วันที่ผ่านมา

    너무 어려워요

  • @JiniAIRon
    @JiniAIRon 16 วันที่ผ่านมา

    Novels or Movies Featuring Muang Tham The mysterious atmosphere and intrigue of Muang Tham have inspired numerous novels and films. Thrillers set against a backdrop of cave exploration and ancient ruins are particularly popular among readers. Films featuring adventures and mysterious discoveries within caves also emphasize the allure of Muang Tham, leaving a lasting impression on audiences. Similar Caves to Muang Tham Similar to Muang Tham, other caves where one can experience both the wonders of nature and human history include Son Doong Cave in Vietnam and Tham Kong Lo Cave in Laos. These caves are also beloved by explorers and tourists for their natural marvels and ancient human traces. Muang Tham is like a hidden gem in Thailand, and its depths still contain untold stories that captivate our imagination. We encourage you to experience the mystery and wonder of Muang Tham for yourself.

  • @bravomylife33
    @bravomylife33 23 วันที่ผ่านมา

    내용은 너무 좋은데 영어발음 원어민ㅇ로 배꿔주심안되요? 한국어도 이상해요

  • @user-yz5ib5wj6n
    @user-yz5ib5wj6n 26 วันที่ผ่านมา

    전자의 실제 속도는 달팽이보다 더 느리다고 하던데 배터리가 연결될 때 거의 빛의 속도로 전구가 켜지는 거 보면, 배터리가 연결되기 전에 이미 전선에는 전자가 꽉 차 있으니 배터리가 연결되면 바로 전, 자기장이 형성되서 자기장이 전선 주변에 형성된 힘으로 전자를 밀어서 이동시키는 건가요? ㅎ 그럼 붙어있는 당구공처럼 아무리 전자가 느려도 맨 뒤에서 전자가 이동하면 맨 앞에 전자가 앞으로 나가는 원리로 빛의 속도로 이동하는 것처럼 보이는 건가요? 예를들면 배터리에 100개의 전자가 있다면 1개가 나오면 자기장 에너지에 의해서 전선에 있는 맨 뒤에 붙으면 전선의 맨 앞이 이동하고, 이렇게 전선에는 계속 배터리에서 나온 전자가 들어오는 건가요?

  • @naturaibelica459
    @naturaibelica459 28 วันที่ผ่านมา

    거시세계도 결국은 미시세계의 에너지반응 얘기죠.

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    Bigfoot transcends being a mere mysterious creature; it symbolizes the curiosity and imagination of humans. Will we ever scientifically prove the existence of Bigfoot? Or will it remain an eternal mystery? For centuries, the tales of Bigfoot have continued to captivate people's imaginations. Its giant footprints, thick fur, and numerous sightings constantly raise the possibility that Bigfoot might be real. However, scientific evidence is still lacking, and Bigfoot may still be evading us somewhere deep in the forest. Far from being just a legend, Bigfoot remains a symbol of mystery, stimulating human curiosity and the desire for discovery. Will we ever uncover the truth about this giant? Or will Bigfoot remain an elusive figure, living on only in endless speculation and imagination?

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    Critical Perspective on the Bermuda Triangle Mystery Statistical Errors: The claim that the Bermuda Triangle has a higher rate of ship and aircraft accidents than other regions lacks statistical evidence. Exaggerated Stories: Many stories have been exaggerated or misrepresented, further inflating the mystery. Scientific Explanation: Scientists argue that the incidents in the Bermuda Triangle can be sufficiently explained by scientific phenomena such as weather conditions, ocean currents, and geomagnetism. "The story of the Bermuda Triangle is one of the most iconic modern legends, born out of human imagination and fear. Yet, through scientific research and critical thinking, the veil is slowly being lifted. What truths lie behind these mysterious events? Sometimes, the answer might lie within ourselves. Ultimately, the Bermuda Triangle reminds us of the power of imagination and the importance of scientific inquiry."

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    Alien Theories and UFOs in Popular Culture Ancient Alien Theories and Government Conspiracies The ancient alien theory is one of the long-standing mysteries associated with UFOs. This theory suggests that extraterrestrials helped ancient civilizations develop, leaving behind traces that persist today. This theory intertwines with conspiracy theories, which claim that governments are secretly researching alien technology. Nevada's Area 51 is often cited as a center of such secretive activities, with many believing that alien technology is being studied there in secrecy. Movies and Literature Featuring UFOs and Aliens Stories of UFOs and aliens have significantly influenced popular culture. Steven Spielberg's Close Encounters of the Third Kind explores humanity's encounter with extraterrestrials, illustrating the profound changes such an event could bring. Additionally, the TV series The X-Files gained global popularity by focusing on alien conspiracy theories, further piquing public interest in UFOs and extraterrestrials. These works reflect how deeply these mysteries have embedded themselves in our collective consciousness. UFOs and Aliens: The Unresolved Mystery We continue to gaze at the skies, wondering about the secrets they hold. The tales of UFOs and aliens extend beyond simple curiosity, touching on fundamental questions about humanity's origins and the existence of life in the universe. Despite the lack of scientific evidence, many people remain convinced of their existence. But why is this so? The Loneliness of Humanity and Curiosity about the Unknown The vastness of the universe and the possibility that we are the only intelligent beings in it can evoke feelings of loneliness and emptiness. Believing in the existence of extraterrestrials offers a form of psychological comfort against this solitude. Additionally, humans are naturally curious about the unknown. UFOs and aliens stimulate this curiosity, driving us to continue our quest for answers. Escaping Reality and the Power of Imagination The desire to escape the difficulties and pains of reality also strengthens the belief in UFOs and aliens. Engaging with these thrilling stories offers a way to distract ourselves from the challenges we face, allowing us to immerse ourselves in the realm of imagination. UFOs and aliens thus become powerful symbols of mystery and intrigue, fueling our fascination with the unknown. We are still looking up at the sky, searching for answers hidden within its vastness. Stories of UFOs and aliens are often based more on imagination and mystery than on scientific evidence. Yet, these stories ignite our relentless curiosity about the universe and prompt us to reflect on the significance of our existence. With the advancement of science and technology, perhaps one day the truth about UFOs and aliens will be revealed. Until then, the mystery continues to captivate us, urging us to keep exploring the unknown.

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    Conclusion: Piecing Together the Puzzle of Lost History The theory of ancient nuclear warfare remains an enigma. The scientific evidence is intriguing in itself, offering the possibility of reshaping our understanding of ancient civilizations. At the same time, these pieces of evidence can be interpreted in multiple ways, and the debate over the theory's credibility persists. If this theory is proven true, it would completely change our perception of human history. The revelation that ancient people possessed technologies beyond our imagination would be a shocking discovery. It would also drive deeper exploration into lost civilizations. However, for now, all of this remains speculative, and further research is needed to substantiate the theory. The theory of ancient nuclear warfare may simply be an intriguing story, or it could open a new chapter in human history. The truth will depend on future research and discoveries. We must continue to delve into the secrets hidden in ancient ruins, piecing together the puzzle of lost history. Who knows? Perhaps another piece of evidence hidden beneath our feet will one day connect the past and future of humanity. The theory of ancient nuclear warfare remains a mystery. While the evidence for the theory is open to debate, it sparks our curiosity and offers a new perspective on human history. The history we know might only be the tip of the iceberg, with untold secrets lying beneath. What truths might we uncover within the mysterious ruins of the past? This enigmatic journey is far from over. So far, we've only scratched the surface of history. Now, it's time to delve into the hidden stories.

  • @user-nv3ek5ju5g
    @user-nv3ek5ju5g หลายเดือนก่อน

    지구는 100년안에 사람이살수없는곳으로 바뀔수도있음

  • @ganeshaom6212
    @ganeshaom6212 หลายเดือนก่อน

    아직도 허무맹랑한 빅뱅이론을 믿는 애들이 있네...신기허다

  • @시크릿쥬쥬샌즈tv
    @시크릿쥬쥬샌즈tv หลายเดือนก่อน

    한국욕이 들리는데..?ㅋㅋㅋㅋ

  • @QUIZ77796
    @QUIZ77796 หลายเดือนก่อน

    우주선 비밀 ㅡ전자기장을 이용한 중력 반중력의 원리이다 ㅡ 전기를 통한 강력한 자시장을 만들고 ㅡs극 n극을 이용해서 뒤에서는 밀고 앞에서는당겨 우주선 추진력으로 이용 ㅡ우주선내부는 차갑다 ㅡ왜냐면 차갑게 해야 전지저향 사라져 만은전기를 보낼수 있기 때문이다

  • @user-ls6us2fm6w
    @user-ls6us2fm6w หลายเดือนก่อน

    우주는 비밀을 풀기 힘듬니다. 왜냐구요? 풀었다 싶으면 또 말 바꾸고 또 풀었다 싶으면 또 말 바꾸고 반복되다 보면 믿음이 깨지는 법이거든요.

  • @MJ-i7o
    @MJ-i7o หลายเดือนก่อน

    ❤ I love it ❤ I wanna join with your TH-cam for my perfect Korean of your perfect English 😊

  • @mycarrot
    @mycarrot หลายเดือนก่อน

    에라이 거래취소요

  • @mycarrot
    @mycarrot หลายเดือนก่อน

    새로운거래처가 될지도 모르겠네요ㅋ 앞으로가 기대됩니다

  • @kgs5470
    @kgs5470 หลายเดือนก่อน

    참 어렵게 설명한다.. 인간이 멍청한게.. 눈에 안보이면 없다고 생각한다.. 우주 공간이 .. 그리고 아주 얕은 농도의 헬륨등으로 채워진 빈 허공이라고 생각하는데 이게 틀린거야.. 허공이 아니라 공간이라는 물질, 매질로 채워진거야. 이걸 인정라면 힉스를 쉬게 이해하지.. 빈공간이라고 생각하니까 힉스장이라는 해괴한 궤변이 나오는 거지.. 그리고, 빛은 매질에 따라 속도가 달라진다..공기에서 물로 짐입할때 입사각이 있는데.. 이때 매질밀도거 올라가면 속도가 떨어지고, 우주 공간이라는 밀도 낮은 매질에서능 빛 속도가 빠른거야.. 우주공간이라도 블랙홀이다 주변 별 등 물질 질량에 따라 공간 밀도가 달라져 그 부분 매질의 밀도변화로 빛이 휘어 진행하고 이때도 밀도가 증가된 부분은 미세하게 속도 저하가 오는거야.. ㅇ 주공간은 공간이라는 매질로 채워졌다는 기초적인 상식을 인정할 때 과하발전이 한단계 올라간다...ㅋㅋ

  • @user-lf5ys9kt3m
    @user-lf5ys9kt3m หลายเดือนก่อน

    आपको तिवारी न्यू ब्लॉग तिवारी न्यू ब्लॉग में देखा है आपकी वीडियो बहुत अच्छी

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    ### Recent Developments In recent decades, cosmology has made rapid advancements. New observational results, such as the discovery of the cosmic background radiation and evidence for the existence of dark matter and dark energy, have been announced. These results have greatly expanded our understanding of the universe. ### Major Theories and Models in Cosmology **Big Bang Theory:** The Big Bang Theory posits that the universe began approximately 13.8 billion years ago from a hot, dense state. The Big Bang Theory explains the expansion of the universe, the existence of the cosmic background radiation, and more. **Dark Matter and Dark Energy:** Dark matter is an invisible substance that makes up most of the universe. Dark energy is the energy driving the accelerated expansion of the universe. The exact nature of dark matter and dark energy remains unknown. **The Ultimate Fate of the Universe:** The ultimate fate of the universe is still undetermined. Scenarios include the 'Big Freeze,' where the universe continues to expand and eventually dissipates; the 'Big Crunch,' where the universe contracts again; and the 'Big Rip,' where the universe expands indefinitely. ### Future Cosmology remains shrouded in many mysteries. The true nature of dark matter and dark energy, as well as the ultimate fate of the universe, are still unknown. Future research in cosmology will focus on unraveling these mysteries. ### Observational Evidence in Cosmology **Expansion of the Universe:** Hubble's Law shows that distant galaxies are moving away from us, indicating that the universe is expanding. **Cosmic Background Radiation:** The cosmic background radiation is the thermal radiation left over from the Big Bang. It serves as evidence that the universe began from a hot, dense state. **Dark Matter:** Observations such as galaxy rotation curves and gravitational lensing indicate that there is more matter in galaxies than can be seen, proving the existence of dark matter. **Dark Energy:** Observations of Type Ia supernovae show that the expansion of the universe is accelerating, proving the existence of dark energy. Cosmology is still shrouded in many mysteries. The identity of dark matter and dark energy and the final fate of the universe are still unknown. Future cosmological research will focus on uncovering these mysteries. ### Learning Cosmology Cosmology is a fascinating yet complex field. There are several ways to learn about cosmology: **Reading Science Books:** Various science books on cosmology are available. Reading these books can help you understand the basic concepts of cosmology. **Watching Science Documentaries:** Numerous science documentaries on cosmology have been produced. Watching these documentaries can provide a visual understanding of cosmology. **Taking Online Courses:** Various online courses on cosmology are available. Taking these courses can provide specialized knowledge about cosmology. **Visiting Science Museums:** Many science museums have exhibitions themed around cosmology. Viewing these exhibits can offer an intuitive understanding of cosmology. Cosmology is an important field that satisfies human curiosity. Learning about cosmology helps broaden our understanding of the universe.

  • @kimking1440
    @kimking1440 หลายเดือนก่อน

    압축프로그램??

  • @starsong5054
    @starsong5054 หลายเดือนก่อน

    중성 미자 검출 방법은 ?

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    In summary, cranes are elegant birds with long necks and legs and straight beaks, while swans have broader beaks and relatively shorter necks. Learning about white cranes reveals their elegance and cultural significance. The white crane is not just a beautiful bird but a symbol of longevity, immortality, and strong family bonds. Though many species are endangered, their majestic flight continues to inspire many. I hope today's story about white cranes stays in your hearts for a long time. Thank you.

  • @way-of-joiner
    @way-of-joiner หลายเดือนก่อน

    그 고도로 발전된 문명은 무엇이 만들었나 또 창조주는 어떻게 창조되었나.. 과연 무에서 유가 가능한건가

  • @brokenking1373
    @brokenking1373 หลายเดือนก่อน

    창조론?신이 인간을 만들었다 라는 이 명제가 이론이라고요? 그냥 썰입니다 썰 !! 우리집에 금송아지 있다 이건 이론이 아닙니다

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    Several potential solutions have been proposed to resolve the black hole information paradox: 1. Information is emitted through Hawking radiation but remains at the singularity. This solution satisfies the law of information conservation but contradicts observational results of Hawking radiation. 2. Information is emitted through Hawking radiation and reconstructed from the singularity. This solution aligns with observational results of Hawking radiation but violates the law of information conservation. 3. The combination of general relativity and quantum mechanics is incorrect. This solution implies that new physical laws need to be discovered. Which of these solutions is correct remains unresolved. Future research is expected to address the black hole information paradox. The black hole information paradox highlights a contradiction between the descriptions of black holes in general relativity and quantum mechanics. According to general relativity, a black hole is a tear in spacetime from which nothing can escape. Therefore, any object that falls into a black hole is trapped forever. However, quantum mechanics states that information must be conserved. Therefore, the information of objects that fall into a black hole must be preserved somewhere. Combining these two theories leads to the conclusion that the information of objects falling into a black hole must be preserved within the black hole. However, the interior of a black hole is a region where known physical laws do not apply. Thus, how information is preserved inside a black hole remains unknown. The black hole information paradox is an unresolved problem. It is believed that new physical laws integrating general relativity and quantum mechanics will be required to solve this paradox.

    • @JiniAIRon
      @JiniAIRon หลายเดือนก่อน

      The black hole information paradox can be divided into two hypotheses: 1. **Information is destroyed**: This hypothesis posits that information is destroyed inside a black hole. Therefore, when a black hole evaporates, the information about objects that fell into the black hole is lost forever. This hypothesis violates the law of information conservation, which is why many physicists do not accept it. 2. **Information is preserved**: This hypothesis posits that information is preserved inside a black hole. Therefore, when a black hole evaporates, the information about objects that fell into the black hole somehow returns to the universe. This hypothesis adheres to the law of information conservation but requires an explanation of how information is preserved within a black hole. The black hole information paradox is one of the greatest challenges in cosmology. Resolving this paradox is believed to require the development of new physical laws, such as quantum gravity. In the cosmic tapestry, where black holes dance, A mysterious rhythm, a celestial trance. Gravity's grip, a cosmic embrace, Bending the fabric of time and space. On the event horizon, where light takes a bow, Whispers of secrets, only the cosmos can endow. Time travel's mirage, a tantalizing notion, A voyage through epochs, a poetic potion. Through the wormholes of uncertainty we delve, Into the past, future, where mysteries swell. The horizon's paradox, a puzzle unsolved, In the vast universe, our questions evolved. Celestial bodies, storytellers of the night, Witness to eons, in their silent flight. The enigma of existence, a timeless quest, In the cosmic symphony, we are but a guest. Parallel universes, mirroring our plight, In the grand theater of the infinite night. Beyond the stardust, where dreams and reality blend, We chase the echoes of time, around the cosmic bend. So, let us marvel at the black hole's eye, Where the past and the future entwine and fly.

  • @TunLeng-i1z
    @TunLeng-i1z หลายเดือนก่อน

    ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @TunLeng-i1z
    @TunLeng-i1z หลายเดือนก่อน

    ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤very very good happy Thank you ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    우주의 가장 신비로운 현상 중 하나인 블랙홀. 이 검은 구멍 속에서는 시간과 공간이 뒤엉키며, 물리 법칙조차 무력해지는 경계가 존재합니다. 우리는 이 거대한 우주적 소용돌이가 단순히 모든 것을 삼키고 없애버린다고 생각하기 쉽지만, 과연 그 속에서 정보는 어떻게 될까요? 현대 과학의 가장 큰 미스터리 중 하나인 블랙홀 정보 역설에 대한 놀라운 이야기가 지금 펼쳐집니다. 양자 정보의 중첩성과 얽힘, 그리고 그 운명에 대한 과학자들의 치열한 탐구를 함께 알아보시죠. 블랙홀의 비밀: 양자 정보의 운명 양자 정보는 전자, 원자, 광자와 같은 양자 상태의 정보를 의미합니다. 간단히 말해, 양자 시스템의 특성과 상태를 정보로 표현한 것입니다. 여기에는 입자의 위치, 운동량, 스핀, 에너지 등이 포함될 수 있습니다. 양자 정보가 중요한 이유는 다음과 같습니다. 양자 역학적 특성을 활용한 새로운 기술 개발에 활용될 수 있기 때문입니다. 예를 들어, 양자 컴퓨터는 기존 컴퓨터보다 훨씬 빠르게 계산을 수행할 수 있으며, 양자 암호는 완벽하게 안전한 통신 시스템을 구축하는 데 사용될 수 있습니다. 우주의 근본적인 작동 방식을 이해하는 데 도움이 될 수 있기 때문입니다. 양자 정보는 물질과 에너지의 본질과 우주의 기원에 대한 중요한 정보를 제공할 수 있습니다. 양자 정보는 다음과 같은 특징을 가지고 있습니다. 중첩성: 양자 정보는 0과 1의 상태가 동시에 존재할 수 있는 중첩 상태에 있을 수 있습니다. 이는 기존 정보가 0 또는 1만을 가질 수 있다는 점과 다릅니다. 얽힘: 두 개 이상의 양자 정보가 서로 얽혀서 한 쌍의 시스템을 형성할 수 있습니다. 이 경우 한 쌍의 양자 정보 중 하나의 상태를 측정하면 다른 하나의 상태도 즉시 결정됩니다. 얽힘은 양자 컴퓨팅과 양자 통신에 필수적인 특성입니다. 정보 보존: 양자 정보는 손실되지 않고 영원히 보존됩니다. 즉, 양자 정보가 사라지는 것은 아닌 다른 형태의 정보로 변환될 뿐입니다. 따라서 양자 정보는 전자, 원자, 광자와 같은 양자들의 사건에 대한 단순한 기록이 아닌, 양자 시스템의 특성과 상태를 표현하는 정보이며, 양자 컴퓨팅, 양자 통신, 우주의 근본적인 작동 방식 이해 등 다양한 분야에서 중요한 역할을 하고 있습니다. 블랙홀과 같은 극단적인 환경에서 정보가 파괴되는지 여부는 아직 완전히 밝혀지지 않았습니다. 하지만 현재까지 제시된 주요 가설은 다음과 같습니다. 1. 정보 보존 가설 블랙홀에 떨어진 물질과 에너지는 호킹 복사라는 형태로 방출되며, 이 과정에서 원래 정보가 모두 보존된다는 가설입니다. 근거: 스티븐 호킹의 연구를 통해 제시되었으며, 블랙홀의 열역학적 성질과 양자 역학의 정보 보존 원리를 기반으로 합니다. 문제점: 호킹 복사는 블랙홀의 질량과 전하에 대한 정보만 포함하고 있으며, 내부에 있던 다른 정보는 담고 있지 않다는 지적이 있습니다. 2. 파괴 가설 블랙홀에 떨어진 물질과 에너지는 정보와 함께 파괴된다는 가설입니다. 근거: 블랙홀의 이벤트 호라이즌 너머는 물리 법칙이 붕괴될 수 있으며, 이 과정에서 정보도 함께 파괴될 가능성이 있다는 주장입니다. 문제점: 양자 역학의 정보 보존 원리와 모순되며, 우주의 총 정보량이 감소한다는 문제점이 있습니다. 3. 홀로그래피 가설 블랙홀 내부의 정보는 이벤트 호라이즌 주변 공간에 홀로그래픽 이미지로 인코딩되어 있다는 가설입니다. 근거: 일반 상대성 이론과 양자 역학을 연결하는 AdS/CFT 대응 이론을 기반으로 합니다. 문제점: 아직 초기 단계의 가설이며, 완전히 검증되지는 않았습니다. 현재 과학자들은 위와 같은 다양한 가설들을 통해 블랙홀 정보 역설 문제를 해결하려고 노력하고 있습니다. 앞으로 더 많은 연구를 통해 블랙홀에서 정보가 어떻게 변화하는지 밝혀질 것으로 기대됩니다. 따라서 블랙홀에서 정보가 파괴되는지 여부는 아직 명확하게 밝혀지지 않았으며, 과학자들의 지속적인 연구가 필요한 분야입니다. 블랙홀 속에서 정보가 파괴될까요, 아니면 영원히 보존될까요? 중첩된 가능성 사이에서 과학자들은 여전히 답을 찾기 위해 끊임없이 노력하고 있습니다. 양자 정보의 비밀은 우주의 근본적인 작동 방식을 이해하는 열쇠가 될 것입니다. 이 미스터리가 풀리는 날, 우리는 블랙홀의 내부뿐만 아니라 우주의 더 깊은 비밀을 엿볼 수 있을지도 모릅니다. 계속되는 탐구와 연구를 통해 언젠가 이 우주의 가장 어두운 구석에서도 밝은 진실의 빛을 발견할 수 있기를 기대하며, 끝없는 호기심과 탐구의 여정을 이어가겠습니다.

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    In conclusion, plants obtain and utilize nutrients in ways different from animals. When we say plants digest food, it does not mean they eat and digest it with a stomach like animals do. Plants use a variety of methods, such as photosynthesis, absorption, symbiosis, and predation, to obtain nutrients, with some processes resembling animal digestion. These diverse plants show amazing ways of adapting to their environments. Not only do plants obtain nutrients through photosynthesis, but they also employ various unique survival strategies, such as omnivory, toxicity, parasitism, and extreme environmental adaptation. These stories of fascinating plants remind us of the diversity and mystery of nature, showing us how complex and interesting our world is. These captivating plant stories will continue to inspire us in the future.

  • @JiniAIRon
    @JiniAIRon หลายเดือนก่อน

    The holographic principle and simulation hypothesis are related theories. The holographic principle suggests that information about the volume of space can be encoded on the boundary, such as the gravitational horizon of that space. Proposed to address the black hole information paradox, it implies that information about matter consumed by a black hole is encoded on the surface of its event horizon. The simulation hypothesis posits that our universe could be a simulation of some intelligent entity, with the existence of minimum and maximum units in the universe. It is associated with the holographic principle as both theories involve limits and phenomena reminiscent of quantum mechanics and computer operations. In other words, the holographic principle proposes that the universe is a 2D projection, while the simulation hypothesis argues that the universe is a simulation run by a computer. Both theories fall within the realms of physics and philosophy, presenting hypotheses that are challenging to scientifically validate or refute. Regarding the fate of an object falling into a black hole, the answer to whether it will undergo complete collapse is as follows: an object falling into a black hole does not undergo complete collapse. An object beyond the event horizon of a black hole is drawn towards its singularity due to the black hole's gravity. The singularity is a region where gravity becomes infinite, and spacetime is warped, violating known physical laws. Therefore, an object falling into a black hole will exist in some form at the singularity. Hawking radiation is the energy emitted from the singularity of a black hole. It arises due to quantum effects, and as the black hole's mass decreases, it emits this radiation. Hawking radiation is not emitted as a thin beam but is composed of various particles such as photons and neutrons. While there is a possibility that an object falling into a black hole could be expelled through Hawking radiation, it does not necessarily mean it will exist solely in the form of Hawking radiation. In more detail, an object falling into a black hole may exist in two possible forms at the singularity: 1. Information Form: - The black hole does not violate the law of information conservation. Therefore, information about the object falling into a black hole should be preserved at the singularity. However, the nature of this preserved information in the region where known physical laws do not apply is yet unknown. 2. Material Form: - The black hole emits energy through Hawking radiation as its mass decreases over time. Consequently, there is a possibility that material could be expelled from the singularity at the moment of the black hole's complete evaporation. However, whether this material retains the original form of the object falling into the black hole remains uncertain. In conclusion, the specific existence form of an object falling into a black hole has not been conclusively determined. It is anticipated that further research will provide more information on the nature of these objects through ongoing scientific exploration. An object that gets pulled into a black hole does not completely collapse. Depending on its mass and angular momentum, part of the object may be emitted as Hawking radiation or remain in orbit around the black hole. The singularity of a black hole is a point where the uniformity of spacetime breaks down, and if matter reaches the singularity, it would have infinite density and temperature. Therefore, if an object is fully absorbed into the singularity, its information would be completely lost. However, a black hole is not absolutely cold; it emits heat. This heat is known as Hawking radiation, and as the black hole’s mass decreases, it emits more heat. Hence, part of the object pulled into the black hole could be emitted as Hawking radiation. Additionally, black holes possess angular momentum, which arises from the rotation of the object. The angular momentum of a black hole includes the angular momentum of the object, but the singularity itself does not have angular momentum. Thus, part of the object pulled into the black hole may remain in orbit around it. In conclusion, an object that gets pulled into a black hole does not completely collapse. Depending on its mass and angular momentum, part of the object may be emitted as Hawking radiation or remain in orbit around the black hole. An object that gets pulled into a black hole does not completely collapse and get ejected as a thin stream like Hawking radiation. Instead, the object is gradually compressed by the immense gravitational forces of the black hole. During this process, the object's energy is converted into heat and kinetic energy, which is then emitted by the black hole as Hawking radiation. This radiation causes the black hole's mass to gradually decrease. If the black hole's mass becomes sufficiently small, it could completely evaporate due to Hawking radiation. However, the object that is pulled into the black hole does not collapse completely and get expelled as a thin stream of Hawking radiation. The information about the object is stored within the black hole, and the energy emitted as Hawking radiation does not contain this information. In other words, the object that is pulled into the black hole does not completely disappear; it remains stored within the black hole. The exact nature of how the object exists inside the black hole is still uncertain. Some scientists believe that a singularity exists within the black hole and that the object is absorbed into this singularity. Other scientists argue that there is no singularity and that the object spreads out into the internal space of the black hole. This issue remains one of the unresolved puzzles in physics. Following the scent of a traveling wormhole, I glimpse the door to the future. The smile of the multiverse, the dance of quanta, A symphony of time in the universe of information. Pathways of spacetime, oh divergent roads, Guard the future of multiple universes. Dreams of old mysteries once heard, Whispers of time trapped in wormholes. The quantum dream of an information multiverse, A fragrance journeying backward through time. Past's future, future's past, A cyclical time, an endless exploration. The rapture of the multiverse, the realm of quanta, A transcended world, a connected silence. Pathways of spacetime, oh divergent roads, Unknown futures, myriad possibilities. Parallel tales, the song of quanta, Moments of wormholes, wings of light. The symphony of quanta in the multiverse of information, I open the door to the future and take a look.

  • @TheHjjin
    @TheHjjin หลายเดือนก่อน

    아름다운 이론이 있어요 라고 하고 끝? ㅎㅎㅎ

  • @MOONSHINE0308
    @MOONSHINE0308 หลายเดือนก่อน

    백만불짜리 다리라고 외칠것 같은 tts음성이 영 구리네요

  • @JiniAIRon
    @JiniAIRon 2 หลายเดือนก่อน

    The scientific claims or theories that suggest black holes as gateways to time travel, other dimensions, or other galaxies are as follows: There is a claim that time travel to the future is possible by passing near a black hole, utilizing the phenomenon where time flows more slowly due to the strong gravity of the black hole. This claim is based on Einstein's special theory of relativity, which explains that the time for an object moving at speeds close to the speed of light flows more slowly compared to an object at rest. Because the gravity of a black hole is so strong that not even light can escape, time near a black hole flows much more slowly than time outside it. Therefore, the crew of a spaceship passing near a black hole could arrive in a future that, from an external viewpoint, has advanced by thousands or even millions of years. There is a hypothesis that traveling to other spaces or times is possible through a hypothetical passage called a wormhole, which connects a black hole and a white hole. A wormhole is a theoretical passage that allows for rapid travel from one point in the universe to another, assuming the entrances of a black hole and a white hole are connected. The black hole acts as an intake for objects, while the white hole serves as an exit. Theoretically, a wormhole could allow travel to other galaxies or dimensions, and if the two ends of the wormhole exist in different times, travel to the past or future could also be possible. However, wormholes are highly unstable and short-lived; if a wormhole contracts, it would destroy anything passing through it. There is a hypothesis that the singularity of a black hole is connected to another dimension. A singularity is a point at the center of a black hole with infinite density and infinite curvature. This singularity is an area that cannot be explained by general relativity alone and requires a theory of quantum gravity. According to some theories, the singularity might be connected to the space of another dimension, and passing through a black hole could lead to another dimensional universe. This hypothesis is related to theories dealing with higher-dimensional universes, such as the brane world theory or M-theory. The scientific claims or theories that suggest black holes as gateways to time travel, other dimensions, or other galaxies have not been fully proven and require much more research and discovery. These remain scientifically unproven hypotheses. Following the scent of a traveling wormhole, I glimpse the door to the future. The smile of the multiverse, the dance of quanta, A symphony of time in the universe of information. Pathways of spacetime, oh divergent roads, Guard the future of multiple universes. Dreams of old mysteries once heard, Whispers of time trapped in wormholes. The quantum dream of an information multiverse, A fragrance journeying backward through time. Past's future, future's past, A cyclical time, an endless exploration. The rapture of the multiverse, the realm of quanta, A transcended world, a connected silence. Pathways of spacetime, oh divergent roads, Unknown futures, myriad possibilities. Parallel tales, the song of quanta, Moments of wormholes, wings of light. The symphony of quanta in the multiverse of information, I open the door to the future and take a look.

  • @tygical
    @tygical 2 หลายเดือนก่อน

    🗣️🔥💯

  • @JiniAIRon
    @JiniAIRon 2 หลายเดือนก่อน

    Theoretically, the only particles that can achieve speeds close to the speed of light in space are those without mass. For example, photons, which are energy quanta of electromagnetic waves, move at exactly the speed of light in a vacuum. Also, neutrinos, which have a very small mass, are believed to be able to reach almost the speed of light. However, according to the theory of special relativity, matter with mass cannot reach the speed of light because it would require an infinite amount of energy to do so. But, matter with mass can reach speeds up to a few percent of the speed of light. For example, high-speed spacecraft can reach speeds of about 0.1% of the speed of light. Also, particles accelerated in high-energy particle accelerators can reach speeds of more than 99.999% of the speed of light. Therefore, the only matter that can achieve speeds close to the speed of light in space is either massless or has a very small mass, and matter with mass cannot reach the speed of light due to energy limitations. Accelerating to more than half the speed of light is currently impossible with our technology. According to the theory of special relativity, a body with mass cannot reach the speed of light, and the closer it gets, the more energy is required. Therefore, to accelerate to more than half the speed of light would require a tremendous amount of energy, and no method of supplying that energy has yet been discovered. However, theoretically, there could be ways to accelerate to more than half the speed of light. For example, some researchers argue that using a shortcut in space called a wormhole could allow for faster-than-light travel. Also, some researchers argue that using a hypothetical spaceship engine called the Alcubierre drive could allow for faster-than-light acceleration. However, these theories have not yet been experimentally proven and may contradict the basic laws of physics. In conclusion, accelerating to more than half the speed of light is currently impossible, and even if it were possible, it would be very difficult. The Alcubierre drive is a hypothetical spaceship engine proposed in 1994 by American physicist Michael Alcubierre. This engine works by installing a device that distorts space in front of and behind the spaceship, so the spaceship itself does not move, but the surrounding space is pulled forward and pushed back to allow for faster-than-light travel. This method is claimed to circumvent the prohibition of faster-than-light speeds in the theory of special relativity. However, the Alcubierre drive is still just a theoretical model with no feasibility. This is because the engine requires a material with a negative energy density to operate, and such a material has not yet been discovered. Also, the Alcubierre drive may contradict the basic laws of physics in that it does not emit gravitational waves predicted by the theory of general relativity. Therefore, the Alcubierre drive is currently an unscientific hypothesis and has many problems for actual implementation. There are several theories about moving faster than the speed of light. For example, some researchers claim that using a shortcut in the universe called a wormhole can allow for travel faster than the speed of light. Also, some researchers claim that phenomena such as teleportation or quantum entanglement can transmit information faster than the speed of light. However, these theories have not yet been experimentally proven and may contradict the basic laws of physics. Therefore, moving faster than the speed of light is currently impossible, and even if it were possible, it would be very difficult. Nuclear fusion plasma, antimatter, and various other engines are all potential future spaceship engines that can reach speeds close to the speed of light. However, it is currently very difficult to actually implement or test these engines. The nuclear fusion plasma engine uses a nuclear fusion reaction to eject plasma at high speed to gain thrust. This engine is expected to reach about 10% of the speed of light. The antimatter engine uses the tremendous energy released when matter and antimatter collide to gain thrust. This engine is expected to reach speeds greater than 50% of the speed of light. Various other engines are various theoretical models, and there are researchers who claim that they can move faster than the speed of light using wormholes, Alcubierre drives, teleportation, etc. However, these engines have not yet been experimentally proven and may contradict the basic laws of physics. Therefore, nuclear fusion plasma, antimatter, and various other engines are all potential future spaceship engines that can reach speeds close to the speed of light, but the possibility of realization is currently low.

    • @JiniAIRon
      @JiniAIRon 2 หลายเดือนก่อน

      Important navigation technologies that made the Age of Discovery possible were the triangular sail and the compass. The triangular sail allowed for sailing against the wind, and the compass provided accurate direction. These technologies enabled Europeans to discover and trade with new lands such as Africa, America, and Asia. A solar sail spaceship gains propulsion by utilizing the radiant energy of the sun. The principle of a solar sail spaceship is to spread the sail and move forward by reflecting sunlight and reacting. Since a solar sail spaceship does not require fuel and can reach speeds close to the speed of light, it is expected to be useful for future space exploration. There are various ways to equip an engine on a solar sail spaceship. For example, solar panels can be installed on the sail to generate electricity, and that electricity can be used to operate ion engines or electromagnetic engines. Alternatively, additional propulsion can be obtained by shooting lasers or particle beams at the sail. However, these methods are still in the experimental stage, and there are many challenges and problems to actually implement them. Therefore, while it is possible to apply the navigation technology of the Age of Discovery to the implementation of a solar sail spaceship, it has not yet been fully realized. Installing solar reflectors on multiple planets could potentially increase the speed of a solar sail spacecraft. However, there are numerous challenges and issues associated with this idea. For example, the following problems need to be addressed:: Installing solar panels outside the Earth on multiple planets is very costly and technically difficult. Especially, it is even more difficult to install on planets outside the solar system. Precise control and aiming are required to shine sunlight on a solar sail spaceship. Because the orbit and direction of the solar sail spaceship can change, it is not easy to keep shining sunlight. Shining sunlight on a solar sail spaceship will heat it. If heat accumulates excessively, the structure of the solar sail spaceship can be deformed or destroyed. Therefore, an effective way to dissipate heat is needed. Shining sunlight on a solar sail spaceship will exert force on it. If the force accumulates excessively, the orbit of the solar sail spaceship can become unstable or escape. Therefore, an effective way to control the force is needed. Therefore, while it is theoretically possible to install solar panels outside the Earth on multiple planets and shine them on the solar sail spaceship, it is very difficult in reality. In the wake of Magellan's legacy, a cosmic odyssey unfolds, Across the vastness, past Pluto, and through the Kuiper Belt it holds. Venturing into realms at the speed of light, Beyond the trinary stars, towards Proxima Centauri's height. A dance with celestial bodies in a distant cosmic ballet, Our quest for knowledge, a journey that knows no delay. Through the cosmic winds and the boundless sea of stars, We explore alien realms, removing the veils that afar. Braving the challenges, fueled by an unyielding dream, Humanity's spirit, a radiant and constant gleam. Probing the secrets of planets yet unknown, A symphony of exploration, a melody to be sown. At the speed of light, our aspirations soar, A yearning for the universe, forever seeking more. In this age of cosmic dreams and fearless might, Humanity reaches for the stars, a celestial flight. So, let us sail through the cosmic sea, Towards a future where the unknown shall be free. Thank you for subscribing and watching.

  • @user-th2kp7nr4s
    @user-th2kp7nr4s 2 หลายเดือนก่อน

    이거 오디오 왜 이렇게 산만하냐??

  • @user-qb6bd1zc5p
    @user-qb6bd1zc5p 2 หลายเดือนก่อน

    이걸 만들면서 왜 충돌 장면을 화면에 쓰지 않았지?

  • @hych8429
    @hych8429 2 หลายเดือนก่อน

    목소리 좋아 특히 영어할때

  • @lifeextension9217
    @lifeextension9217 2 หลายเดือนก่อน

    일반인 입니다. 개인적으로는 일론 머스크가 제정신 아닌것 같습니다. 몇가지 이유를 대 볼께요. 정확한지는 모르겠고, 상식 기준에서 작성합니다. 1. 화성의 중력은 지구의 30프로대이다. ---> 즉 사람이 살수가 없어요. 신체변화 - 각종 질병 - 이런게 해결되지 않으면, 인간이 살수 있는 중력은 지구의 95~105프로 내외수준일 겁니다. ---> 인공중력을 만들면 된다 ----> 현존기술은 없고, 가상으로는 화성 둘레를 돌아가는 거대한 궤도를 만들어 인공중력 만들면 되겠지만, 그럴 자원도 불가능하고, 그럴 운반기술도 없고, 답이 없어요. 애초에 지구 크기와 비슷한 행성 찾지 못하면 인류는 적응할수 없다고 생각되네요. 2. 산소가 없다. - 중력이 없으니 당연히 뭐가 있겠습니까? 테라포밍도 중력이 있어야 가능한거지, 우리가 히말라야 정상만 가도 중력이 산소에 미치는 영향을 체험하는데...화성 테라포밍 자체가 말이 안되지 않을까요 ---> 지구와 크기 비슷한 행성에나 가능한게 테라포밍 아닐까 합니다. 3. 인간이 살아가기 위해서는 물과 불이 필요합니다. - 물은 있다 없다 소리 있는데, 직접가서 찾아 보지 않는이상 모르는 거고, 불은 산소가 없어서 사용 못합니다. 4. 자원 - 모든 제품, 건축, 생활용품, 운반도구 등등 지구의 자원을 바탕으로 하고 있는건데...화성에 먼저 테라포밍 같은거 생각하기 전에, 쓸수 있는 자원이 뭐가 있는지 먼저 조사해야 되겠죠. 인류가 살아갈수 있는 자원을 바탕으로 테라포밍 해야 되는게 맞는데, 화성이 어떠한 자원이 있고 ~ 그걸 어떤 식으로 활용해야 되는지를 알아야지 ~~ 그 다음 순위가 테라포밍이 되든, 뭐가되든 하는거죠. 그러니 애초에 선결과제가 많고, 중력이 우리가 살고 있는 지구의 95프로에서 105프로 정도만이 인간이 감당할수 있는 행성일 겁니다. 애초에 화성에 간다. 화성을 테라포밍 한다가 말이 안되는 거라고 생각해요. 일반인 기준에서 ~ 왜 자꾸 미국과 일론머스크 같은 애들이 화성 이야기 하는지 가만히 생각해보면, 선동이라는게 느껴집니다. 달에 간적도 없었던 미국이 반세기 전에 달 착륙이라고 전 세계 거짓 홍보했던 그런거와 같은 거라고 봅니다.

  • @JiniAIRon
    @JiniAIRon 2 หลายเดือนก่อน

    Saturn has been studied by many space probes. NASA's Cassini-Huygens mission arrived in Saturn's orbit in 2004 and investigated Saturn and its moons. This mission provided a wealth of information about Saturn's rings, moons, and atmosphere. The mission also included research on Titan, with the European Space Agency's Huygens probe making a historic landing on Titan's surface. Saturn is a mysterious planet surrounded by beautiful rings and diverse moons, making it a significant target for space exploration and research. Saturn offers fascinating insights into the primordial past of the solar system and the processes of planetary formation. It is expected that future exploration and research will unveil even more of its secrets. Saturn's moons are among the most diverse and intriguing objects in the solar system, with 145 discovered so far, 13 of which have diameters exceeding 50 kilometers. These moons exhibit variations in size, shape, composition, and activity, influenced by Saturn's gravity and magnetic field. Some notable Saturnian moons include: Saturn's largest moon is Titan, the second-largest moon in the solar system. Titan is the only moon in the solar system with a significant atmosphere, primarily composed of nitrogen and methane. Its surface features lakes and rivers of liquid methane and ethane, as well as geological features made of ice and organic materials. Titan is one of the most intriguing celestial bodies in the solar system, potentially offering an environment where life could exist. Saturn's second-largest moon is Rhea, with a diameter of 1,527 km, accounting for 0.4% of Saturn's mass. Rhea is composed of ice and rock, and its surface features craters and bright and dark hemispheres. Rhea does not have its own magnetic field and is exposed to radiation within Saturn's magnetosphere. There is a possibility that Rhea contains an ocean of liquid water beneath its icy surface. The third-largest moon of Saturn is Iapetus, with a diameter of 1,471 km, making up 0.3% of Saturn's mass. Iapetus is composed of ice and rock and features a stark contrast between its dark and light hemispheres. The dark hemisphere is covered with organic material believed to originate from Titan, while the light hemisphere is made of ice. Iapetus has a massive ridge and canyons and is exposed to radiation from Saturn's magnetosphere. Saturn's fourth-largest moon is Dione, with a diameter of 1,123 km, accounting for 0.1% of Saturn's mass. Dione is made of ice and rock and has a surface with craters, canyons, and ice volcanoes. There is a possibility that Dione also has an ocean of liquid water beneath its ice. Dione is exposed to radiation within Saturn's magnetosphere. The fifth-largest moon of Saturn is Tethys, with a diameter of 1,062 km, making up 0.1% of Saturn's mass. Tethys is composed of ice and features a surface with craters, canyons, and mountain ranges. Its most distinctive features are the large crater Odysseus and the enormous canyon Ithaca Chasma that encircles the moon. Tethys is exposed to radiation from Saturn's magnetosphere. Saturn's sixth-largest moon is Enceladus, with a diameter of 504 km, accounting for 0.01% of Saturn's mass. Enceladus is made of ice and has a surface with craters, canyons, and ice volcanoes. Enceladus emits jets of gas and dust from its south polar region, which are the source of Saturn's E ring. Enceladus has an ocean of liquid water beneath its icy surface, offering a potential environment for life. Saturn's seventh-largest moon is Mimas, with a diameter of 396 km, making up 0.01% of Saturn's mass. Mimas is composed of ice and rock and features a surface with craters, canyons, and mountain ranges. Its most distinctive feature is the massive crater Herschel, which spans a third of Mimas's diameter and has a central peak rising 6 km high. Mimas is exposed to radiation within Saturn's magnetosphere. Uranus is classified as an ice giant in the solar system, composed primarily of ice and gas. However, the exact internal structure of Uranus is not well-known. It mostly has an atmosphere consisting of hydrogen and helium, along with various compounds such as methane, ammonia, and water vapor. Uranus has at least 27 known moons, with Titania, Oberon, Umbriel, Ariel, and Miranda being the five major moons. The moons of Uranus exhibit diverse characteristics in terms of size, shape, composition, and activity, influenced by Uranus's gravity and magnetic field. Let's take a closer look at the moons of Uranus. 1. Titania: The largest moon of Uranus, with an estimated diameter of about 1,578 kilometers. Titania is composed of ice and rock, featuring a surface with craters, canyons, and mountain ranges. There is a possibility of a subsurface ocean beneath the ice on Titania. 2. Oberon: One of the larger moons of Uranus, second in size only to Titania. Oberon is composed of ice and rock, displaying various geological features such as craters, canyons, and mountain ranges. Oberon is known for the absence of geological activity. 3. Ariel: One of Uranus's larger moons, with a diameter of approximately 1,157 kilometers. Ariel is composed of ice and rock, and its surface exhibits craters, canyons, plains, with craters being particularly prominent. Maps of Ariel have been created, showing similarities to Earth. 4. Umbriel: One of the larger moons of Uranus, with a diameter of about 1,170 kilometers. Umbriel is composed of ice and rock, and its surface has a dark appearance. There is a possibility of a subsurface ocean beneath the ice on Umbriel. 5. Miranda: Among the smaller moons of Uranus, with a diameter of approximately 472 kilometers. Miranda has unique geological features, including deep canyons, cliffs, craters, and plains. Miranda has a singular structure compared to other moons.

    • @JiniAIRon
      @JiniAIRon 2 หลายเดือนก่อน

      Neptune is the furthest planet in the solar system, comprised of ice and gas, and was first discovered by William Herschel in 1781. It was named after the Roman god of the sea, Neptune. Neptune is located approximately 4.5 billion kilometers away from the Sun and takes about 165 Earth years to complete one orbit around the Sun. Its atmosphere is mainly composed of hydrogen and helium, with small amounts of methane, ammonia, water vapor, and thick clouds of ammonia ice, giving Neptune its distinct blue color. Neptune has a total of 14 known moons. The largest and brightest moon is Triton, occupying 99.5% of Neptune's mass. Triton is unique among Neptune's moons as it orbits in the opposite direction and features ice volcanoes and nitrogen geysers, making it one of the few geologically active natural satellites in the solar system. The other moons of Neptune were mostly discovered in the 20th century and are named after characters from the works of William Shakespeare and Alexander Pope. These moons vary significantly in size, shape, composition, and activity, influenced by Neptune's gravity and magnetic field. Neptune has faint ring structures composed of fragments. Although the existence of the rings was debated in the 1960s, it was confirmed by the Voyager 2 mission in 1989. Neptune's rings consist of five main rings and several minor rings, made up of ice and dust. Unlike Saturn's rings, Neptune's rings appear dark, which is hypothesized to be due to changes in the ring material caused by solar radiation. Being the coldest planet in the solar system, Neptune has a surface temperature of around -218°C. However, its interior is hot and highly pressurized, with a presumed liquid core. Neptune harbors the strongest winds in the solar system, with storms reaching speeds of up to 2,100 km/h. Neptune, invisible to the naked eye, is the most secretive and mysterious planet in the solar system. The only spacecraft to visit Neptune is Voyager 2, which passed by the planet in 1989, providing a wealth of information about Neptune and its moons. Neptune offers intriguing insights into the primordial past of the solar system and the processes of planetary formation. It is expected that future explorations and research will unveil even more of its secrets. Mystery of the cosmos, an infinite endeavor. Jupiter's radiance, Saturn's beauty. Neptune's icy maze, A realm of azure dreams for Neptune. Each ring shining in the boundless cosmos, The moment reflected in our eyes is the grand happy ending. The smile of the universe embraces our dreams. Thank you for subscribing and watching."

  • @user-he6zo9rb7q
    @user-he6zo9rb7q 2 หลายเดือนก่อน

    진화론 창조론 둘다 믿음에 영역이지요 빅뱅이 원소보다 작은 점에서 폭발햇다면서 그 작은점은 어디서왓죠?그 공간은 또 어떻게 생겨낫죠?차라리 그 어떤존재가 창조햇다가 더 믿음이 가는데

  • @user-he6zo9rb7q
    @user-he6zo9rb7q 2 หลายเดือนก่อน

    진화?웃기는소리 그럼 중간단계 화석이 엄청많아야지 왜 없어요 화석은 많은데?별 시덥지않은 화석 몃개로 진화래 지나가는 소가 웃겟다 창조론이 더 설득력있지 글고 인간이어떻게 몃백억년을 알지?백년도 못 사는데 과학이니까 다 믿으라고요?전 반절만 믿을게요

    • @Zft_dhsks_1028
      @Zft_dhsks_1028 2 หลายเดือนก่อน

      진화에 대해 아무것도 모르는 사람이 진화에 대해 말하는게 참 웃기네ㅋㅋㅋ😂😂 중간단계 드립은 진짜 몇십번을 들었는지 모르겠네😂😂

    • @user-he6zo9rb7q
      @user-he6zo9rb7q 2 หลายเดือนก่อน

      @@Zft_dhsks_1028 드립이아니라 실제로 없잖아요?제말이 틀렷나요?몃백억년에 걸쳐서 잔화햇다면 중간단계 화석이 몃만게 아니면 몃십억개가 나와야 되잖아요 그거없으면 맨날 진화는 허공에 매아리로 들립니다 중간단계가 핵심이니까요

    • @Zft_dhsks_1028
      @Zft_dhsks_1028 2 หลายเดือนก่อน

      @@user-he6zo9rb7q ㅋㅋㅋㅋㅋ 제발 진화론이 틀렸다고 우길시간에 맞춤법이나 배우고 오시면 안될까요?? 그리고 없긴 뭐가 없어요ㅋㅋㅋ 왜 항상 하나같이 중간단계 화석이 없다고 세뇌된것마냥 똑같이 말하네ㅋㅋㅋ 아무것도 모르면서 없다고 말하면 진짜 없는게 되나봐요?ㅋㅋ 화석이 어떻게 만들어지는지, 만들어지는 조건도 모르는 양반이 몇십만개는 있어야한다 이러네ㅋㅋㅋㅋ

    • @user-he6zo9rb7q
      @user-he6zo9rb7q 2 หลายเดือนก่อน

      님도 우기면 다 맞는건가요?그리고 댓글쓰다보면 오타도있고 그런거지 뭔 인신공격입니까?진화론증거1도 저는 못 밧으니까 안 믿는거에요 님이 믿고사세요

    • @Zft_dhsks_1028
      @Zft_dhsks_1028 2 หลายเดือนก่อน

      @@user-he6zo9rb7q 님이 말하는거랑 제가 말하는거랑 동일시를 못하는데 동일시를 하고 있다는거부터가 뭐가 이상하다고 생각못해요?ㅋㅋㅋ 하긴 과학에 ㄱ자도 모르는 인간이 과학을 얘기하니ㅋㅋ 입에서 나온다고 전부 말이 아닌데ㅎㅎ 저도 기독교집안에서 자랐지만 우리나라 기독교인들 참 우습네요ㅋㅋ

  • @JiniAIRon
    @JiniAIRon 2 หลายเดือนก่อน

    Mars is the fourth planet in the solar system, located an average of 228 million km from the Sun. Mars is a terrestrial planet, and its surface is made up of rocks and impact craters. Mars is known as Mars in the West, named after Mars, the god of war in Roman mythology, because of its reddish color. In the East, it is called Mars or Hyungokseong (熒惑星), using the character for fire (火). Mars has a very short revolution period of 687 days and a rotation period of 24 hours and 37 minutes due to the Sun’s gravity. Mars has almost no atmosphere, and the surface temperature is very extreme, with 20°C during the day and -73°C at night. 95.97% of Mars’ atmosphere is carbon dioxide, and the rest is mostly nitrogen and argon. Mars has differentiated into a high-density metallic core made of low-density materials. The core of Mars occupies 42% of the total volume and is presumed to be in a molten state. Mars has the highest mountain in the solar system, Olympus Mons, and the largest canyon, Valles Marineris. Mars has two small satellites, Phobos and Deimos. Mars shines red in the night sky and can be easily observed with the naked eye. Its apparent magnitude is -3 ~ +1.6, making it the fifth brightest celestial body in the sky after the Sun, Moon, Venus, and Jupiter. Mars is the most difficult planet to explore in the solar system, and so far six spacecraft have visited Mars. In 1965, the American Mariner 4 made the first close flyby of Mars, photographing 45% of Mars’ surface and measuring its atmosphere and magnetic field. In 1971, the Soviet Mars 3 attempted to land on Mars, but communication was lost 14.5 seconds after landing. In 1976, the American Viking 1 and 2 landed on Mars, analyzed the surface materials and atmosphere, and explored the possibility of life. In 1997, the American Pathfinder landed on Mars and deployed a small rover, Sojourner, to investigate the rocks and soil on the surface. In 2004, the American Spirit and Opportunity landed on Mars, analyzed the minerals, rocks, and soil on the surface, and studied Mars’ past and present environment, the possibility of life, etc. In 2012, the American Curiosity landed on Mars, analyzed the minerals, rocks, and soil on the surface, and studied Mars’ past and present environment, the possibility of life, etc. In 2016, the European Space Agency and Russia’s ExoMars attempted to land on Mars, but failed. In 2018, the American InSight landed on Mars and measured Mars’ internal structure and seismic activity. In 2021, the American Perseverance and China’s Tianwen 1 landed on Mars, analyzed the surface materials and atmosphere, and are exploring the possibility of life.

    • @JiniAIRon
      @JiniAIRon 2 หลายเดือนก่อน

      I will briefly explain about the asteroids between Mars and Jupiter. Between Mars and Jupiter, there is a disc-shaped region where millions of small and irregular solid celestial bodies exist. These celestial bodies are called asteroids, and they are distributed in this region called the asteroid belt or main asteroid belt. The asteroids in the asteroid belt are residual materials left from the formation process of the solar system, and they can become meteorites that can fall on Earth. The mass of the asteroid belt is about 4% of the Moon, and the largest asteroid is the dwarf planet Ceres, with a diameter of about 950km. Asteroids can be classified into carbonaceous, silicate, and metallic, and they can also cause orbital resonance due to the gravitational perturbation of Jupiter. The challenge of unfolding dreams into starlight, An endless adventure towards the mysteries of the universe. Enchanted by the blue flow of the Milky Way, Our steps led by the song of the stars. Unraveling the hidden secrets of the galaxy, The courage to challenge the puzzle of the universe. A journey that began at the edge of the Milky Way, Our dreams blooming in the infinite universe. The stage of the universe where starlight dances, The fruits of challenge are always where we’ve run to. Ordinary things become special moments, Our challenge to set off in search of the mysteries of the universe.

  • @asadabdulbasit5146
    @asadabdulbasit5146 2 หลายเดือนก่อน

    greatest information about the whole birds