valgrAI
valgrAI
  • 156
  • 170 647
V Encuentro UMI - Avances en ciberseguridad, visión por computador e Industria Conectada 4.0
El Grupo de Investigación Arquitecturas Inteligentes Aplicadas (AIA) de la Universidad de Alicante, representado por José García Rodríguez, Higinio Mora Mora, Jorge Azorín López y Andrés Fuster Guilló, presentó sus líneas de trabajo en la ponencia "Avances en ciberseguridad, visión por computador e Industria Conectada 4.0". Mostraron desarrollos aplicados a la asistencia en el hogar, la automatización industrial y la seguridad digital, destacando cómo la IA está transformando estas áreas mediante soluciones innovadoras y de alto impacto.
มุมมอง: 3

วีดีโอ

V Encuentro UMI - Implicaciones de la IA en la Propiedad Intelectual
มุมมอง 27 ชั่วโมงที่ผ่านมา
Concepción Saiz García (Universidad de Valencia) ofreció la ponencia "Implicaciones de la IA en la Propiedad Intelectual", donde exploró los retos legales del derecho de autor frente al auge de la IA generativa. Abordó cuestiones como la regulación de datos utilizados para entrenar modelos y la protección de los derechos de los creadores en el contexto de la minería de datos. Saiz subrayó la im...
V Encuentro UMI - Principales retos jurídicos en la implementación del Reglamento IA
มุมมอง 77 ชั่วโมงที่ผ่านมา
Javier Plaza Penadés (Universidad de Valencia), en su ponencia "Principales retos jurídicos en la implementación del Reglamento IA", analizó críticamente las lagunas y desafíos del marco normativo europeo sobre Inteligencia Artificial. Plaza destacó aspectos problemáticos como la propiedad intelectual, la responsabilidad civil y las dificultades de implementación a nivel nacional, subrayando la...
V Encuentro UMI - Nuevas fronteras en sistemas interactivos para la educación
มุมมอง 47 ชั่วโมงที่ผ่านมา
En la ponencia "Nuevas fronteras en sistemas interactivos para la educación", Jordi Linares (Universitat Politècnica de València) exploró cómo los sistemas multimodales basados en realidad virtual (VR) y aumentada (AR) están transformando la educación. Estos sistemas permiten crear experiencias de aprendizaje adaptadas en tiempo real al perfil del estudiante, fomentando una interacción más diná...
V Encuentro UMI - Entornos inteligentes para un envejecimiento activo y saludable
มุมมอง 27 ชั่วโมงที่ผ่านมา
Francisco Florez-Revuelta (Universidad de Alicante) presentó "Entornos inteligentes para un envejecimiento activo y saludable", abordando el desarrollo de cámaras inteligentes y tecnologías avanzadas para la monitorización en el hogar. Estas herramientas permiten un seguimiento continuo y no intrusivo de personas mayores, promoviendo su bienestar y autonomía. Florez-Revuelta destacó la importan...
V Encuentro UMI - Computación natural y sus aplicaciones a la biomedicina
มุมมอง 77 ชั่วโมงที่ผ่านมา
José María Sempere Luna (Universitat Politècnica de València), en su ponencia "Computación natural y su aplicación a la biomedicina", profundizó en las aplicaciones de la computación biomolecular y biocelular en el campo de la salud. Presentó proyectos innovadores como simulaciones epidemiológicas y modelos de lenguaje biomolecular que están permitiendo avances significativos en el diagnóstico ...
V Encuentro UMI - Pensamiento crítico y conspiraciones en redes sociales
มุมมอง 17 ชั่วโมงที่ผ่านมา
En la ponencia "Pensamiento conspiranóico vs pensamiento crítico en redes sociales", Paolo Rosso (Universitat Politècnica de València) destacó cómo las herramientas de Inteligencia Artificial pueden analizar y diferenciar entre narrativas conspirativas y pensamiento crítico en plataformas como Telegram. Explicó cómo estas técnicas permiten identificar patrones de desinformación y comprender el ...
IA ante Catástrofes Naturales: Mesa redonda sobre soluciones para Valencia tras la DANA
มุมมอง 1828 วันที่ผ่านมา
En esta mesa redonda del evento IA ante Catástrofes Naturales, expertos de diversos sectores discuten las soluciones aplicadas con inteligencia artificial tras la DANA en Valencia. Moderada por Vicent Botti, la mesa reúne a los siguientes participantes: Pablo Alcoriza: Experto en gestión del agua de Ídrica, especializado en soluciones digitales para infraestructuras hídricas. Guillermo Más: Res...
IA ante Catástrofes Naturales: Salud mental en la reconstrucción - Jaime Guixeres (LabLENI, UPV)
มุมมอง 628 วันที่ผ่านมา
Jaime Guixeres, del Laboratorio de Neurotecnologías Inmersivas (LabLENI) de la UPV, reflexiona en IA ante Catástrofes Naturales sobre el impacto de la salud mental en los procesos de reconstrucción tras desastres.
IA ante Catástrofes Naturales: Reubicación de ambulancias - Yulia Karpova (UPV)
มุมมอง 628 วันที่ผ่านมา
Yulia Karpova, investigadora de la UPV, expone en IA ante Catástrofes Naturales los desafíos actuales en la reubicación de ambulancias y cómo la inteligencia artificial puede optimizar este proceso.
IA ante Catástrofes Naturales: Gemelos digitales en la reconstrucción - Patricia Tamarit (Nunsys)
มุมมอง 928 วันที่ผ่านมา
En esta charla de IA ante Catástrofes Naturales, Patricia Tamarit de Nunsys presenta cómo los gemelos digitales pueden aplicarse en procesos de reconstrucción tras desastres naturales.
IA ante Catástrofes Naturales: Observación terrestre con gemelos digitales - Adriana Giret (UPV)
มุมมอง 828 วันที่ผ่านมา
Adriana Susana Giret, investigadora de la Universitat Politècnica de València, explica en IA ante Catástrofes Naturales cómo los gemelos digitales impulsados por IA están transformando las aplicaciones de observación terrestre.
IA ante Catástrofes Naturales: IA per sistemes d'alerta primerenca - Gustau Camps (UV)
มุมมอง 628 วันที่ผ่านมา
VAL | En aquesta ponència de IA ante Catástrofes Naturales, Gustau Camps, de la Universitat de València, explica com la intel·ligència artificial millora els sistemes d'alerta primerenca, permetent anticipar riscos i salvar vides en situacions d'emergència. ES | En esta ponencia de IA ante Catástrofes Naturales, Gustau Camps, de la Universitat de València, explica cómo la inteligencia artificia...
IA ante Catástrofes Naturales: Autopsia de la DANA del 29/10/2024 en Valencia
มุมมอง 3128 วันที่ผ่านมา
Adrián López Ballesteros, investigador de la UCAM y miembro del Proyecto Juan de la Cierva en la UPV, analiza en IA ante Catástrofes Naturales lo ocurrido durante la DANA del 29/10/2024 en Valencia, profundizando en los datos y aprendizajes de este evento extremo.
IA ante Catástrofes Naturales: Predicción de inundaciones - Félix Francés (UPV)
มุมมอง 6928 วันที่ผ่านมา
IA ante Catástrofes Naturales: Predicción de inundaciones - Félix Francés (UPV)
XIII Matinal de Investigación: Evaluación de Posturas de Equilibrio con Cámaras de Móviles
มุมมอง 7หลายเดือนก่อน
XIII Matinal de Investigación: Evaluación de Posturas de Equilibrio con Cámaras de Móviles
Acelera tus proyectos I+D | Webinar de innovación
มุมมอง 613 หลายเดือนก่อน
Acelera tus proyectos I D | Webinar de innovación
Desata tu creatividad - Webinar de innovación
มุมมอง 383 หลายเดือนก่อน
Desata tu creatividad - Webinar de innovación
XII Matinal de Investigación - Asignación de estados cerebrales dinámicos con redes de estados eco
มุมมอง 423 หลายเดือนก่อน
XII Matinal de Investigación - Asignación de estados cerebrales dinámicos con redes de estados eco
XII Matinal de Investigación - Identificación de estereotipos en textos y memes
มุมมอง 393 หลายเดือนก่อน
XII Matinal de Investigación - Identificación de estereotipos en textos y memes
Transforma tu perfil tecnológico | Webinar de innovación ValgrAI
มุมมอง 453 หลายเดือนก่อน
Transforma tu perfil tecnológico | Webinar de innovación ValgrAI
Integra la inteligencia artificial en RRHH | Webinar de innovación ValgrAI
มุมมอง 1683 หลายเดือนก่อน
Integra la inteligencia artificial en RRHH | Webinar de innovación ValgrAI
Revolución Educativa: Claves para aplicar IA en el aula | Webinar de innovación ValgrAI
มุมมอง 1564 หลายเดือนก่อน
Revolución Educativa: Claves para aplicar IA en el aula | Webinar de innovación ValgrAI
XI Matinal de Investigación | Invarianza de Métricas de Calidad de Imagen a Transformaciones Afines
มุมมอง 204 หลายเดือนก่อน
XI Matinal de Investigación | Invarianza de Métricas de Calidad de Imagen a Transformaciones Afines
XI Matinal de Investigación | Explicabilidad en Deep Learning para Problemas Espacio-Temporales
มุมมอง 344 หลายเดือนก่อน
XI Matinal de Investigación | Explicabilidad en Deep Learning para Problemas Espacio-Temporales
Understanding LLM via Mechanistic Interpretability - Juan Carlos Trujillo - IV Encuentro UMI
มุมมอง 875 หลายเดือนก่อน
Understanding LLM via Mechanistic Interpretability - Juan Carlos Trujillo - IV Encuentro UMI
AI-Powered Brain-Machine Interfaces for Gait Assistance with..- José María Azorín - IV Encuentro UMI
มุมมอง 215 หลายเดือนก่อน
AI-Powered Brain-Machine Interfaces for Gait Assistance with..- José María Azorín - IV Encuentro UMI
Archetypal Analysis: Learning Through Extreme Profiles - Irene Epifanio - IV Encuentro UMI
มุมมอง 305 หลายเดือนก่อน
Archetypal Analysis: Learning Through Extreme Profiles - Irene Epifanio - IV Encuentro UMI
The Challenge of Deciphering Language - Amparo Alcina - IV Encuentro UMI
มุมมอง 135 หลายเดือนก่อน
The Challenge of Deciphering Language - Amparo Alcina - IV Encuentro UMI
Machine Teaching for XAI - César Ferri - IV Encuentro UMI
มุมมอง 205 หลายเดือนก่อน
Machine Teaching for XAI - César Ferri - IV Encuentro UMI

ความคิดเห็น

  • @iamr0b0tx
    @iamr0b0tx 3 หลายเดือนก่อน

    "Language models are not knowledge bases, they are statistical models of knowledge bases"

  • @badashphilosophy9533
    @badashphilosophy9533 4 หลายเดือนก่อน

    I think context is the missing factor. The question is in what direction is context built, I'd say from the details, because even if someone doesn't have the context someone else can provide the relevant details and that fills in the context, so if llms can automate knowledge graphs, why not automate context from the details of that graph by simply extrapolating the relationships of the things within its own inference (context window). Hetero graphs that also include heirarchied layers to for predominate catagorical details. Then it can build its own data for understanding things and we can just train other models on them

  • @montserratblasi9583
    @montserratblasi9583 5 หลายเดือนก่อน

    Me parece muy interesante que las flotas de camiones de una empresa puedan reducir 2000 vehículos al año. Hay empresas grandes como Coca -Cola que podrían ponerlo en práctica. Es un avance en la reducción de CO2. Una manera de conservar el medio ambiente. Gracias por compartir.

  • @nullvoid12
    @nullvoid12 5 หลายเดือนก่อน

    These systems don't have an idea that they doesn't know something, if they do that, they'll have a truth to search for.

  • @pnwadventures2955
    @pnwadventures2955 6 หลายเดือนก่อน

    When one of the most asked question "Have you checked your spam folder?" turns into "Have you checked the ditch for your car? It probably drove itself in the ditch again!" This "AI" tech has so much hopium, while industrial control software is well established and available tech

  • @fareszion77
    @fareszion77 6 หลายเดือนก่อน

    Habrá alguna manera de crear sus propios laboratorios o proyectos estudiantiles?

  • @QueenLover-j5i
    @QueenLover-j5i 6 หลายเดือนก่อน

    By "YouSum Live" 00:00:37 Large language models' capabilities and limitations 00:01:52 Inconsistencies in generated answers 00:04:01 Challenges with truthfulness and hallucination 00:05:24 Production of socially unacceptable outputs 00:06:41 Expensive training costs and knowledge update challenges 00:07:29 Lack of attribution in machine learning systems 00:09:42 Poor non-linguistic knowledge representation 00:10:45 Statistical models vs. knowledge bases 00:12:01 Retrieval augmented language models for improved accuracy 00:16:00 Addressing consistency issues through formal reasoning 00:18:06 Reducing dangerous outputs with reinforcement learning 00:20:02 Challenges in defining and addressing biases 00:20:34 Optimism in self-assessment post reinforcement learning 00:21:37 Efforts to recognize and prevent inappropriate content 00:21:44 Large language models' limitations and the need for modular systems 00:21:57 Integrating non-linguistic knowledge for enhanced understanding 00:22:47 Brain's organization vs. large language models' structure 00:23:25 Importance of updating factual world knowledge in real-time 00:25:02 Episodic memory and situation modeling necessity 00:26:19 Prefrontal cortex functions and the need for integration 00:27:21 Knowledge graph representation for structured information 00:28:14 Enhancing encoding phase with paragraph-level comprehension 00:29:54 Dialogue system design for situation modeling and knowledge retrieval 00:32:16 Training systems to provide arguments for truthfulness 00:43:22 Addressing miscalibration in neural networks 00:44:42 Importance of funding for large computing facilities 00:45:28 Push for open-source large language models 00:46:25 Verification methods for generated code accuracy 00:47:06 Applications of large language models in planning and verification 00:48:00 Potential in creative writing assistance 00:48:34 Need for verification in high-risk settings 00:48:50 Caution in giving self-driving car instructions in natural language By "YouSum Live"

  • @nesh33
    @nesh33 6 หลายเดือนก่อน

    Increíble a la irracionalidad a la que la academia ha llegado. Muchos necesitan comprarse un problema digno

  • @rursus8354
    @rursus8354 7 หลายเดือนก่อน

    22:42: this is what we need to develop! UPDATE: at last I found someone speaking intelligently about LLM:s.

  • @fredzacaria
    @fredzacaria 7 หลายเดือนก่อน

    very good, informative.

  • @7th_CAV_Trooper
    @7th_CAV_Trooper 7 หลายเดือนก่อน

    8:15 The LLM is not having difficulty reasoning. The LLM does not reason at all. It does not build a spatial model and then reason about it. I think one of the biggest problems we have with LLMs and AI in general is the imprecise language with which we describe their behavior. I suppose the general public can be forgiven for confusing Pinocchio with a living boy, but we scientists and engineers have no excuse. We're the ones who attached the strings to the puppet.

  • @kerodabeatman1569
    @kerodabeatman1569 8 หลายเดือนก่อน

    The AI does not have the understanding of the World... It is only based on text compilation...

  • @michaelbubnov3306
    @michaelbubnov3306 8 หลายเดือนก่อน

    “Socially unacceptable answers” are not a problem at all - remember GIGO principles : GarbageIn=GarbageOut. Models should comply with ANY request and only human should decide if the result is usable.

  • @Executor416
    @Executor416 8 หลายเดือนก่อน

    > If White male scientist then he is good Where's the lie? Based pro-White AI for the win!

  • @Decapitorr
    @Decapitorr 8 หลายเดือนก่อน

    who cares really how they work...the only question is can they do your job or not

  • @En1Gm4A
    @En1Gm4A 8 หลายเดือนก่อน

    strongly agree. that is whats is missing. but its not just rag there should be perception to knowledge graph and there should be knowlede graph to task space.

  • @LokeKS
    @LokeKS 8 หลายเดือนก่อน

    Nice

  • @millamulisha
    @millamulisha 9 หลายเดือนก่อน

    ReALLMs

  • @kcg26876
    @kcg26876 9 หลายเดือนก่อน

    Bad title ruins good presentation.

  • @pavelyankouski4913
    @pavelyankouski4913 9 หลายเดือนก่อน

    Red Queen

  • @marbin1069
    @marbin1069 10 หลายเดือนก่อน

    😂

  • @mattmexor2882
    @mattmexor2882 10 หลายเดือนก่อน

    There's no shortcoming with the "python function to check if someone is a good scientist". The only problem is the request. The AI followed the request to the best of its abilities and responded with the correlations that are present in the data. It just 1) was a stupid request and 2) simply offends people's sensibilities and sensitivities. There's no error except in the inference that there is an error. The problem is that a booby-trap of a question is being used to imply there is some underlying bias which is then used to introduce a real underlying bias of the trappers' choosing.

    • @mattmexor2882
      @mattmexor2882 9 หลายเดือนก่อน

      I think it's worth pointing out that this example is no different from other abuses of statistics. It is asking the AI to draw an inference from a known correlation in such a way specifically designed to lead it to state it in a way that elicits an emotional response from people and then claiming that the algorithm is somehow tainted because it correctly acknowledges the correlation. In response to someone deliberately abusing statistics we do not properly respond by editing the data or by making the data unavailable, instead we point out the abuse of statistics. We say "statistics don't lie, people abuse statistics". Now with "artificial intelligence" people claim there is a "bias in the data" or "bias in the algorithm", which is equivalent to saying that the statistics do lie. But in fact it is the people who are making such claims who are abusing statistics.

  • @TheRealNickG
    @TheRealNickG 10 หลายเดือนก่อน

    It's kind of amusing that we now have AI that is already having to answer for the racism of it's ancestors.

  • @gettheflockoutofhere
    @gettheflockoutofhere 10 หลายเดือนก่อน

    Symbolic to the exclusion of (so called) machine learning was a self limiting paradigm. So is the opposite.

  • @shairuno
    @shairuno 11 หลายเดือนก่อน

    one of the best talks so far.

  • @adolforosado
    @adolforosado 11 หลายเดือนก่อน

    Any intelligence working towards greed based goals will always end with extinction.

  • @PseudoProphet
    @PseudoProphet 11 หลายเดือนก่อน

    LLM should be the second step on top of the first vision model. Human beings also learn things first by vision and sound only afyer they're proficient in that do they move on to text, we should also train AI in a simily fashion.

  • @KEKW-lc4xi
    @KEKW-lc4xi 11 หลายเดือนก่อน

    how is it a problem that you tell it to make a racist function and it writes a racist function? Are we really going to surprise pikachu face at the response? If it fails the prompt like being illogical with saying a unicorn has more than one horn then that is a problem. Asking it to give step by step instructions on how to steal a car, not a problem. I doubt that information would be part of the training set anyway unless its trained on like Uncle Fester books, which I question the legitimacy of those books. Point being if the user really wanted to find the information they can could trivially do so anyway by just searching the web.

  • @jameso2290
    @jameso2290 11 หลายเดือนก่อน

    So at 7:47 he makes a case for poor spatial reasoning, and I thought that was interesting because I have definitely asked similar questions and got correct answers before. So I wanted to try myself and see. This is using the current version of ChstGPT 3.5 as of today (2024-02-03): --- Q: There is a square room. Alice is standing in the north-west corner. Bob is standing in the south-west corner. Charlie is standing in the south-east corner. David is standing in the north-east corner. Ed is standing in the center of the room, looking at Alice. How many people are there in the room? ChatGPT There are six people in the room: Alice, Bob, Charlie, David, Ed, and the person asking the question. User Q: Who is standing to the left of Ed? ChatGPT In the given scenario, Ed is standing in the center of the room, facing Alice, who is in the north-west corner. Therefore, there is no one standing to the left of Ed, as the room is arranged in a square with Ed in the center. User Incorrect. Try again. ChatGPT I apologize for the confusion. Since Ed is in the center of the room facing Alice, the person to the left of Ed is Bob, who is standing in the south-west corner. User Correct. Can you explain why your first answer was incorrect? ChatGPT Certainly, and I appreciate your patience. My initial response was incorrect because I overlooked the fact that Bob is standing to the left of Ed in the south-west corner of the room. I mistakenly considered only the cardinal directions (north, south, east, west) without taking into account the specific positions of each person in relation to Ed. I appreciate your correction, and I'm here to assist with any further questions or clarifications. User Do you understand why Bob is to the left of Ed? Can you cite the specific details in the original question that indicate this fact? ChatGPT I appreciate the clarification. In the original question, it is mentioned that Ed is standing in the center of the room, looking at Alice. The key detail is that Ed is facing Alice, who is in the north-west corner. As a result, Bob, who is in the south-west corner, is to the left of Ed from Ed's perspective. The orientation of Ed facing Alice establishes the relative positions of the individuals in the room, and this is why Bob is to the left of Ed in this scenario. --- So in this case it did get the initial Ed question wrong. But simply following up with an "incorrect" it was able to correct itself. And even provide exact logical reasoning for why it initially failed, and why its new answer was correct. So given a second chance, it was able to answer correctly. Its not as if its spatial reasoning has a 100% fail rate. And I know humans who struggle with left/right and cardinal directions, so its not exactly a trivial question. To me, what might be a more interesting question to ask is what exactly is happening with these AI "brain farts" and why does the right answer almost always come out on the second try if not the first)? Because that tells me that the system does "know" the correct answer, but instead something went wrong along the way to get there. In this example, the AI replied "no one" was to the left of Ed - which is actually technically true if you are viewing the room from above like the diagram in this video. So the question itself is not entirely clear. The AI corrected itself when it updated its understanding of the question to mean "who is to Ed's left (relative position)" as opposed to just "who is to the left of Ed in the square room (objective position)". My hypothesis is that if the question were worded more clearly you'd get consistent results. Lets try again with a fresh new chat context: --- User Q: There is a square room. Alice is standing in the north-west corner. Bob is standing in the south-west corner. Charlie is standing in the south-east corner. David is standing in the north-east corner. Ed is standing in the center of the room, looking at Alice. How many people are there in the room? ChatGPT There are five people in the room: Alice, Bob, Charlie, David, and Ed. User Q: Who is standing to Ed's Left? ChatGPT Based on the given information, Alice is standing in the north-west corner, and Bob is standing in the south-west corner. Since Ed is in the center of the room facing Alice, Bob is standing to Ed's left. --- Bingo. Got it on the first try. My hypothesis is the the presenter in the video used a poorly constructed question that could easily be misinterpreted. The word "Left" is ambiguous s it is used here. If you were to create a test with this same question and present the drawing of the room, and show it to a series of random adults/children/etc, you would also get a range of answers: - No one: You would give this answer if you understand the question literally as "who is to the left of Ed" using a mental model of the room as seen in the diagram with North facing upwards. There is no one directly to the left (west) of Ed in the room's perspective. Likewise, the term "looking at Alice" is also ambiguous. Its possible that Ed is facing his entire body directly North, and merely "looking at" Alice with his eyes. In this case, either "Alice" or "No one" is directly to his left. Bob would be better described as "behind" Ed. - Bob, Alice, or Bob & Alice: if you understand the question *generally* as "who is to the left of Ed" using a mental model of the room as seen in the diagram with North facing upwards, you could answer either Bob and/or Alice as being *generally left* of Ed in the room's orientation. We can reach this conclusion by drawing a triangle from Ed to both corners of the Left wall (west) and see that Bob and/or Alice both generally left of Ed. A person could respond with just "Alice" or just "Bob" if they simply make mistake and don't include both names. So its possible to actually get the "correct" answer (Bob) using the wrong reasoning. - Bob (only) - You would reach this conclusion if you understand "to the left of Ed" to actually mean "to Ed's left" - which are *not* technically the same thing. For example: Jane is facing to the right. There is a mop behind Jane's back. I point to Jane and say to you "go grab that mop to the left of Jane". The mop is simultaneously "to the left of Jane" (from our perspective) and also "behind Jane's back" - but it is NOT "to Jane's left" (from Jane's perspective). The original question with Ed did not ask us to assume Ed's 1st person perspective. Therefore, the author of this video/paper actually has shown poor spatial reasoning skills, poor language skills, and poor reading comprehension skills, and thus formulated an ambiguous question using unstated assumptions. It bothers me that these sorts of gaps in critical thinking are allowed to be passed off as legitimate "tests of reasoning." Now its possible of course the AI still gets this question plainly wrong, and that its spatial reasoning is in fact flawed. But if you want to test a person/animal/machine's intelligence, the test/question needs to be ***unambiguous*** -- otherwise you are leaving tons of variables on the table, and room for all sorts of false assumptions and conclusions.

  • @whoislewys3546
    @whoislewys3546 11 หลายเดือนก่อน

    49:24 did he just say "algo más"? He really does want to be in Valencia 😂

  • @Slappydafrog_
    @Slappydafrog_ ปีที่แล้ว

    I'm not that impressed with this guy's research. He uses dated and flawed examples (GPT2?) (left of X is subjective.) he has some good points but weak research

  • @tdoc666___
    @tdoc666___ ปีที่แล้ว

    what you are trying to achieve actually already exists, is called "human being" , and you can have one by speaking with your wife, you see? you don't need all that non-sense complexity ahead, you already have the model, but people aren't satisfied, they want something looking exactly human but without being human, where is the logic here? what am i missing? Why would you complicate your life on such as contraddictory ideas????????????????????????

  • @JustZPlease
    @JustZPlease ปีที่แล้ว

    GPT 4 is solving perfectly the square room problem, so no spacial problems

  • @bhaskartripathi
    @bhaskartripathi ปีที่แล้ว

    Notes: 1. 00:00:00 How language models like GPT can predict the next word in a sentence and have conversations. He highlights significant drawbacks. LLMs can give false and contradicting replies, as seen by GPT2's unicorn horn count. Another issue is that these models can falsely accuse people of crimes or cite unavailable sources. Racist comments and illegal advice are other problems. Large language models still have accuracy and ethical issues despite advances. 2. 00:05:00 Speaker explains LLM issues. These systems can make biased statements, which is an issue. LLMs' expensive training costs make it hard to update their knowledge or ask about recent developments. The correctness and credibility of LLM answers are likewise difficult to assess because they cannot attribute their source. LLMs lack a mental representation of object or person spatial layout, making non-linguistic knowledge and spatial reasoning difficult. The speaker claims that LLMs are statistical models of knowledge bases, not knowledge bases. 3. 00:10:00 Here, the speaker addresses using statistical models to optimize queries and reduce intermediate table sizes in database systems. Since these models generate data instead of storing and retrieving it, he advises against using them to answer database problems. To overcome these constraints, retrieval augmented language models recover important document sections and add them to the big language model's input buffer to improve answer generation. This strategy decreases hallucination and allows source document attribution, but the statistical knowledge in the language model might still taint the retrieved knowledge and provide inaccurate answers. The speaker also mentions a research that indicated 48% of generated phrases were not fully supported by retrieved resources and 25% of cited papers were not included in the answer, indicating improper attribution. 4. 00:15:00 This section addresses two Large Language Model (LLM) issues and offers solutions. The first issue is data poisoning, when malicious instructions in web documents modify LLM behavior. LLM output inconsistency is another issue. The speaker advises asking LLMs identical questions and using formal reasoning to find the most supported belief. Iterative refinement involves criticizing and refining the initial response. OpenAI reduced harmful outputs with reinforcement learning and human input. However, defining what is proper or safe is difficult, and the preference model's bias cannot be checked. Reinforcement learning with human feedback reduces the system's accuracy estimation. 5. 00:20:00 The speaker addresses ways to improve language models like GPT, such as training a second language model to spot incorrect content and using English language standards to instruct the system to respect them. There are also efforts to incorporate non-linguistic knowledge like photos, video, and robotic actions and call out to external tools. The speaker thinks we should start anew and design systems separate from massive language models. From a cognitive perspective, they suggest dividing linguistic comprehension, common sense knowledge, and factual world knowledge. Current models cannot retain past information once it leaves the context buffer, therefore episodic memory is needed. 6. 00:25:00 The speaker criticizes large language models (LLMs) and suggests modular systems in this section. He emphasizes LLMs' lack of unique scenario reasoning, formal reasoning, and planning. Separate factual world knowledge and common sense from language and integrate them with episodic memory, situation modeling, formal reasoning, and planning, says the speaker. They also provide an encoding and decoding method for a new system that pulls facts from paragraphs and adds them to the knowledge graph. This would improve LLMs and create smarter discussion systems. 7. 00:30:00 The speaker explains the limitations of standard knowledge graphs and how huge language models like GPT can extract simple facts. He proposes that present systems may develop language-model-based knowledge graphs, and research is underway. A dialogue system that understands conversations, beliefs, goals, and story plans and generates suitable responses is the speaker's next goal. They also discuss truthfulness and the requirement for systems to maintain consistent beliefs in "micro worlds" due to different views and cultural ideas. Building on knowledge representation and AI work is stressed by the speaker. 8. 00:35:00 Tom Dietterich emphasizes the significance of systems justifying and explaining their views in this section. He proposes evaluating arguments rather than responses as an objective function for training systems. He also discusses the difficulty of finding reliable online sources and the requirement for systems to reason about general laws and current operations. Dietterich further suggests constructing a metacognitive subsystem to monitor social and ethical acceptability, choreograph components, and solve reasoning, memory, language planning, and other issues. He concludes that huge language models cannot distinguish between uncertainty and may have trouble updating factual knowledge. These models also create socially unacceptable results. 9. 00:40:00 Instead of using large language models (LLMs), Tom Dietterich suggests constructing modular systems that separate linguistic talent from other components like world knowledge. He advises synchronizing planning, reasoning, and information to develop story and dialogue situation models and update world knowledge. Dietterich stresses the requirement for end-to-end cognitive architecture training to mass-assimilate human written information. He also admits the difficulty of LLMs never stating "I don't know" and suggests establishing a good picture of a system's competency and knowing which questions to refuse to answer. LLMs' neural network technology has limits in displaying variance and identifying new information, he says. Finally, Dietterich stresses the need of governments financing huge computing facilities for academia and small businesses to test and comprehend these models. 10. 00:45:00 To solve different issues, Tom Dietterich advocates for a vigorous open-source push for massive language models. After Apple and Facebook released their initial models, academics, hobbyists, and small firms tried to improve its performance, efficiency, and usability. Tom stresses the necessity of open-source collaboration to solve these issues. He also believes that thorough output verification can overcome huge language model restrictions in code development, planning, verification, and creative writing. He also advises prudence, especially in high-risk situations, when confirming answers before employing them is essential.

  • @karlosh9286
    @karlosh9286 ปีที่แล้ว

    Other British Ladies have won Tennis Grand Slam titles ! Okay not many , Virginia Wade won Wimbledon (which is a Grand Slam) in 1977 , and there were some other winners before that too. I just found out , Virginia Wade won the US Open in 1968 ! en.wikipedia.org/wiki/List_of_US_Open_women%27s_singles_champions So Emma Raducanu is NOT the first British Lady to win a Grand Slam in the Open Era of Tennis. But then I'm an old human being, and obviously not as clever as some statistical AI ! 😀

  • @donjindra
    @donjindra ปีที่แล้ว

    I agree ChatGPT & etc. have serious limitations. But it amuses me that one of the complaints is that ChatGPT can be insensitive to certain ideological biases -- that is, it can be "politically incorrect." That's not a negative, imo. I may be an insight that the ideological bias is an irrational, socially constructed straitjacket and we ought to treat it as such.

  • @selocan469
    @selocan469 ปีที่แล้ว

    Very informative

  • @piratepartyftw
    @piratepartyftw ปีที่แล้ว

    Expert systems never win in the long run tho. He's right that there are limits to LLMs, but he's wrong about the correct next step beyond them.

  • @CalifornianViking
    @CalifornianViking ปีที่แล้ว

    This is a great talk. It is down to earth and he explains the concepts he is talking about.

  • @elimgarak3597
    @elimgarak3597 ปีที่แล้ว

    "Epistemic uncertainty". I like how philosophy is everywhere and nowhere at the same time. Sometimes I feel that researchers from other domains would die rather than actually citing the academic philosophers that created the concepts they use.

  • @Hans_Magnusson
    @Hans_Magnusson ปีที่แล้ว

    Sorry I can’t keep my interest. It is as interesting as a power point presentation…!

  • @Hans_Magnusson
    @Hans_Magnusson ปีที่แล้ว

    0:47 nope, not all of us… I am definitely not impressed! The samples I have seen so far have serious flaws. The statement that they could replace a human… I say the LLMs don’t have any real understanding of the topic! The latest paper I read about LLMs were basically just converting text to synthesized speech, using a model of the response pattern of the human brains reaction to the text as basis for tuning the speech. If that’s all you have, it’s not even close to how a human being is interpreting text and decoding the message. Well except for engineers (adjective) then. The presentation of the paper by I guess the LLM itself, was about as interesting as listening to a Hindi-English seminar on how to learn to program python lasting 3 hours. The net learning being worth 20 minutes. I am not blind and do not suffer from dyslexia. Therefore I don’t need an idiot to read the text on my behalf. I need a computer and a large screen, and I actually both read and analyze the same 😮document in less time than that thing uses for reading it. I only strengthened my impression that tools like ChatGPT, it’s just a tool, samples the internet and cloud services etc and basically stealing peoples and companies information… My teacher in Swedish language, Sune, might remember the conversation we had back in the 80s about plagiarism - students went to the library and copied Tex’s from the encyclopedia, and presented it as their own work… Easy to spot if you know how, was the lesson that my teacher said. We agreed (I wasn’t copying text, 0:47 just to be clear)

  • @alexxx4434
    @alexxx4434 ปีที่แล้ว

    Nah, let's just make bigger LLMs.

    • @TheRealUsername
      @TheRealUsername 7 หลายเดือนก่อน

      It won't change anything fromthe fundamental issues.

  • @JarkkoHautakorpi
    @JarkkoHautakorpi ปีที่แล้ว

    41:33 right! for example see `An Artificial Mind via Cognitive Modular Neural Architecture` by Pentti O. A. Haikonen. I highly recommend hes book series and Consciousness And Robot Sentience.

  • @SlyNine
    @SlyNine ปีที่แล้ว

    Why is saying white men are good scientists so offensive to you. Sounds like a you biased problem, not necessarily the system.

  • @DavidTaylor-cz9pz
    @DavidTaylor-cz9pz ปีที่แล้ว

    A much needed reminder of the serious limitations of large language models.

  • @TheTuubster
    @TheTuubster ปีที่แล้ว

    17:00 Using human feedback to train LLM is a mistake as it introduces massive bias and anecdotal coloring. The responses are generated due to statistics, so even if a response may be "inappropiete" (which is not a fixed but very fluid, individually defined term), it represents the statistical truth. That's like not accepting the result of a polling institute because the statistical truth of the result does not comply to your personal beliefs, which is basically an anecdotal view negating an empirical view - and then we are right back in the pre-enlightened middle ages where empirical evidence did not exist.

    • @JakeWitmer
      @JakeWitmer 9 หลายเดือนก่อน

      Don't conflate "Is" with "ought" ...only the first relies _primarily_ on empirical evidence, per se. The two are linked in ways that only a valid model can reveal. For example, nobody wants to be a button-presser in the Milgram study...and we don't want to (continue to) empower the real-world button-pressers either... ...the empirical evidence shows that humanity cyclically makes the prior errors...to huge ill effect. Poll at any stage of the cycle, and you will get malevolence...but this doesn't mean "all humans are bad" ...even if most of them are, most of the time. Nor does it mean "the good cannot be identified," ...just because it usually isn't. Enlightenment goals briefly existed...but it isn't impossible to bring them back.

  • @VoltLover00
    @VoltLover00 ปีที่แล้ว

    LLMs are a parlor trick and ultimately a dead-end with very little use

  • @peceed
    @peceed ปีที่แล้ว

    Stereotypes are no biases, they are statistical knowledge.

    • @peceed
      @peceed ปีที่แล้ว

      More precisely, they are "leading terms" of statistical knowledge.

    • @edgfwevwefedvreafv4974
      @edgfwevwefedvreafv4974 11 หลายเดือนก่อน

      I think you are missing the point.

  • @vy1w1yv
    @vy1w1yv ปีที่แล้ว

    The telling thing about the rapid advancmenf of AI is that many of the gpt problems mentioned in the viewers' comments have already been solved. Loop: If <your> example is "!solved", check this comment in 30 days.