MEDIOCRE_GUY
MEDIOCRE_GUY
  • 84
  • 23 000
HistGradientBoostingClassifier using Scikit-Learn
๐‡๐ข๐ฌ๐ญ๐†๐ซ๐š๐๐ข๐ž๐ง๐ญ๐๐จ๐จ๐ฌ๐ญ๐ข๐ง๐ ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐ž๐ซ implements gradient boosting using histogram-based techniques. It aggregates feature values into discrete bins (histograms) and processes these bins instead of individual samples. This algorithm is faster and more memory-efficient for large datasets. It can handle datasets with millions of samples due to its binning strategy.
๐‘ฎ๐’Š๐’•๐‘ฏ๐’–๐’ƒ ๐’‚๐’…๐’…๐’“๐’†๐’”๐’”: github.com/randomaccess2023/MG2023/tree/main/Video%2084
๐™„๐™ข๐™ฅ๐™ค๐™ง๐™ฉ๐™–๐™ฃ๐™ฉ ๐™ฉ๐™ž๐™ข๐™š๐™จ๐™ฉ๐™–๐™ข๐™ฅ๐™จ:
01:19 - Import required libraries
03:19 - Load ๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ_๐—ฟ๐—ฒ๐—ฐ๐—ผ๐—ด๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป dataset
06:10 - Perform preprocessing
08:36 - Separate features and classes
09:12 - Split the dataset
10:34 - Apply ๐—›๐—ถ๐˜€๐˜๐—š๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ฒ๐—ป๐˜๐—•๐—ผ๐—ผ๐˜€๐˜๐—ถ๐—ป๐—ด๐—–๐—น๐—ฎ๐˜€๐˜€๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฟ
13:10 - Plot ๐—ฐ๐—ผ๐—ป๐—ณ๐˜‚๐˜€๐—ถ๐—ผ๐—ป_๐—บ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
20:16 - Print ๐—ฐ๐—น๐—ฎ๐˜€๐˜€๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป_๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜
#machinelearning #histgradientboostingclassifier #supervisedlearning #supervisedclassification #datascience #python #pythonprogramming #jupyternotebook #letterrecognitiondataset
เธกเธธเธกเธกเธญเธ‡: 27

เธงเธตเธ”เธตเน‚เธญ

Calculate Inception Score (IS) using PyTorch
เธกเธธเธกเธกเธญเธ‡ 49เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
In this video, I tried to explain how ๐ˆ๐ง๐œ๐ž๐ฉ๐ญ๐ข๐จ๐ง ๐’๐œ๐จ๐ซ๐ž (๐ˆ๐’) can be calculated using PyTorch. Inception score is a metric that is often used for evaluating the quality of synthetic images provided by generative models. Inception score estimates the quality of a collection of synthetic images based on how well the pretrained ๐™„๐™ฃ๐™˜๐™š๐™ฅ๐™ฉ๐™ž๐™ค๐™ฃ๐™‘3 model classifies them as one of 1000 known objects. Inception...
RandomizedSearchCV using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 53เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐‘๐š๐ง๐๐จ๐ฆ๐ข๐ณ๐ž๐๐’๐ž๐š๐ซ๐œ๐ก๐‚๐• is a hyperparameter tuning technique that comes with the Scikit-Learn library. It explores a predefined search space of hyperparameters and randomly selects a few combinations to evaluate model performance. Unlike GridSearchCV which systematically examines all the possible combinations, RandomizedSearchCV selects a fixed number of combinations randomly. If the hyperparameter ...
GridSearchCV using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 1142 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐†๐ซ๐ข๐๐’๐ž๐š๐ซ๐œ๐ก๐‚๐• is a function that comes with Scikit-Learn library and it is a process for tuning hyperparameters in machine learning models. The performance of a machine learning model significantly depends on the selection of hyperparameters. ๐†๐ซ๐ข๐๐’๐ž๐š๐ซ๐œ๐ก๐‚๐• loops through a predefined set of hyperparameters and selects the optimal values from them after exhaustively considering all parameter combin...
K-fold cross validation using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 1142 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐Š-๐Ÿ๐จ๐ฅ๐ ๐œ๐ซ๐จ๐ฌ๐ฌ ๐ฏ๐š๐ฅ๐ข๐๐š๐ญ๐ข๐จ๐ง is a technique used for evaluating the performance of machine learning models. It uses different portions of the dataset as train and test sets in multiple iterations and helps a model to generalize well on unseen data. Scikit-Learn's ๐ญ๐ซ๐š๐ข๐ง_๐ญ๐ž๐ฌ๐ญ_๐ฌ๐ฉ๐ฅ๐ข๐ญ method uses a fixed set of samples as the train set and the rest of the samples outside the train set as the test set, wh...
GradientBoostingClassifier using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 1162 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐†๐ซ๐š๐๐ข๐ž๐ง๐ญ๐๐จ๐จ๐ฌ๐ญ๐ข๐ง๐ ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐ž๐ซ is a supervised machine learning algorithm. It builds an additive model in a forward stage-wise fashion and allows for the optimization of arbitrary differentiable loss functions. ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—ฎ๐—ฑ๐—ฑ๐—ฟ๐—ฒ๐˜€๐˜€: github.com/randomaccess2023/MG2023/tree/main/Video 79 ๐—œ๐—บ๐—ฝ๐—ผ๐—ฟ๐˜๐—ฎ๐—ป๐˜ ๐˜๐—ถ๐—บ๐—ฒ๐˜€๐˜๐—ฎ๐—บ๐—ฝ๐˜€: 00:47 - Import required libraries 02:24 - Load ๐œ๐ซ๐ž๐๐ข๐ญ_๐š๐ฉ๐ฉ๐ซ๐จ๐ฏ๐š๐ฅ dataset 04:38 - Perform preprocessi...
ExtraTreesClassifier using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 862 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐„๐ฑ๐ญ๐ซ๐š๐“๐ซ๐ž๐ž๐ฌ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐ž๐ซ is a supervised machine learning algorithm. It is a type of ensemble learning technique which fits a number of randomized decision trees (i.e., extra trees) on various sub-samples of the dataset. It contributes to reducing the variance of the model and results in less overfitting. ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—ฎ๐—ฑ๐—ฑ๐—ฟ๐—ฒ๐˜€๐˜€: github.com/randomaccess2023/MG2023/tree/main/Video 78 ๐—œ๐—บ๐—ฝ๐—ผ๐—ฟ๐˜๐—ฎ๐—ป๐˜ ๐˜๐—ถ๐—บ๐—ฒ๐˜€๐˜๐—ฎ๐—บ๐—ฝ๐˜€: 01...
Quadratic Discriminant Analysis (QDA) using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 792 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐๐ฎ๐š๐๐ซ๐š๐ญ๐ข๐œ ๐ƒ๐ข๐ฌ๐œ๐ซ๐ข๐ฆ๐ข๐ง๐š๐ง๐ญ ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ (๐๐ƒ๐€) is a supervised machine learning algorithm. It is very similar to Linear Discriminant Analysis (LDA) except the assumption that the classes share the same covariance matrix. In other words, each class has its own covariance matrix. In this case, the boundary between classes is a quadratic surface instead of a hyperplane. ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—ฎ๐—ฑ๐—ฑ๐—ฟ๐—ฒ๐˜€๐˜€: github.com/randomacc...
CatBoost Classifier | Machine Learning | Python
เธกเธธเธกเธกเธญเธ‡ 2213 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Categorical Boosting (๐‚๐š๐ญ๐๐จ๐จ๐ฌ๐ญ) is a gradient-boosting algorithm for machine learning. Gradient boosting is a process in which many decision trees are constructed iteratively. In CatBoost, each successive tree is built with reduced loss compared to the previous trees. I used ๐ฆ๐ฎ๐ฌ๐ก๐ซ๐จ๐จ๐ฆ๐ฌ.๐œ๐ฌ๐ฏ dataset for this example. The dataset is available in the repository. It contains 2 types of mushrooms in t...
Bagging Classifier using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 423 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐๐š๐ ๐ ๐ข๐ง๐  is a supervised machine learning algorithm. It is an ensemble learning technique in which multiple base estimators are trained independently and in parallel on different subsets of the training data. The final prediction is made by aggregating all the predictions of the base estimators. I used ๐—ด๐—น๐—ฎ๐˜€๐˜€_๐—ถ๐—ฑ๐—ฒ๐—ป๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป.๐—ฐ๐˜€๐˜ƒ dataset in this example. The dataset is available in the repository. ...
Artificial neural network for regression task using PyTorch
เธกเธธเธกเธกเธญเธ‡ 1203 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
A regression analysis in machine learning is used to investigate the relationship between one or more independent variables (treated as ๐˜ง๐˜ฆ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ฆ๐˜ด) and a dependent variable (regarded as ๐˜ฐ๐˜ถ๐˜ต๐˜ค๐˜ฐ๐˜ฎ๐˜ฆ). It is a method for predictive modelling and is used to predict a continuous outcome. I used ๐˜ด๐˜ฌ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ'๐˜ด ๐œ๐š๐ฅ๐ข๐Ÿ๐จ๐ซ๐ง๐ข๐š ๐ก๐จ๐ฎ๐ฌ๐ข๐ง๐  dataset for this example. This dataset has 8 features and I built a very simple ar...
Hartigan index using Python
เธกเธธเธกเธกเธญเธ‡ 133 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐‡๐š๐ซ๐ญ๐ข๐ ๐š๐ง ๐ข๐ง๐๐ž๐ฑ (๐‡๐ˆ) is computed by taking the logarithm of the ratio among the sum-of-squares between each cluster (๐’๐’๐) and the sum-of-squares within the clusters (๐’๐’๐–). It is a cluster evaluation technique. ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—ฎ๐—ฑ๐—ฑ๐—ฟ๐—ฒ๐˜€๐˜€: github.com/randomaccess2023/MG2023/tree/main/Video 73 ๐™„๐™ข๐™ฅ๐™ค๐™ง๐™ฉ๐™–๐™ฃ๐™ฉ ๐™ฉ๐™ž๐™ข๐™š๐™จ๐™ฉ๐™–๐™ข๐™ฅ๐™จ: 00:57 - Import required libraries 04:03 - Create data 05:07 - Perform preprocessing 05:19 - Perf...
Linear Discriminant Analysis using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 783 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
๐‹๐ข๐ง๐ž๐š๐ซ ๐ƒ๐ข๐ฌ๐œ๐ซ๐ข๐ฆ๐ข๐ง๐š๐ง๐ญ ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ (๐‹๐ƒ๐€) is a supervised machine learning algorithm. This approach is used in machine learning to solve classification problems with two or more classes. ๐‹๐ƒ๐€ fits a Gaussian density to each class, assuming all classes share the same covariance matrix. I used ๐—ฟ๐—ฎ๐—ถ๐˜€๐—ถ๐—ป.๐˜…๐—น๐˜€๐˜… dataset for this example. The dataset is available in the repository. It contains 2 types of raisins...
XGBoost Classifier | Machine Learning | Python API
เธกเธธเธกเธกเธญเธ‡ 574 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
eXtreme Gradient Boosting (๐—๐†๐๐จ๐จ๐ฌ๐ญ) is a gradient-boosting algorithm for machine learning. ๐—๐†๐๐จ๐จ๐ฌ๐ญ builds a predictive model by combining the predictions of multiple individual models, often decision trees, in an iterative manner. I used ๐—ฏ๐—ฎ๐—ป๐—ธ๐—ป๐—ผ๐˜๐—ฒ_๐—ฎ๐˜‚๐˜๐—ต๐—ฒ๐—ป๐˜๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป.๐—ฐ๐˜€๐˜ƒ dataset for this example. The dataset is available in the repository. It contains 2 types of entities in the target column: ๐Ÿฌ & ๐Ÿญ. ...
LightGBM Classifier | Machine Learning | Python API
เธกเธธเธกเธกเธญเธ‡ 1054 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Light Gradient-Boosting Machine (๐‹๐ข๐ ๐ก๐ญ๐†๐๐Œ) is a gradient-boosting algorithm for machine learning. It uses a histogram-based method in which data is bucketed into bins using a histogram of the distribution. I used ๐—บ๐—ฎ๐—ด๐—ถ๐—ฐ_๐—ด๐—ฎ๐—บ๐—บ๐—ฎ_๐˜๐—ฒ๐—น๐—ฒ๐˜€๐—ฐ๐—ผ๐—ฝ๐—ฒ.๐—ฐ๐˜€๐˜ƒ dataset for this example. The dataset is available in the repository. It contains 2 types of entities in the target column: ๐—ด=๐—ด๐—ฎ๐—บ๐—บ๐—ฎ(๐˜€๐—ถ๐—ด๐—ป๐—ฎ๐—น) & ๐—ต=๐—ต๐—ฎ๐—ฑ๐—ฟ๐—ผ๐—ป(๐—ฏ๐—ฎ๐—ฐ๐—ธ๐—ด๐—ฟ๐—ผ...
AdaBoost Classifier using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 5254 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
AdaBoost Classifier using Scikit-Learn
Logistic Regression using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 3424 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Logistic Regression using Scikit-Learn
Complement Naive Bayes using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 434 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Complement Naive Bayes using Scikit-Learn
Gaussian Naive Bayes using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 514 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Gaussian Naive Bayes using Scikit-Learn
Bernoulli Naive Bayes using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 554 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Bernoulli Naive Bayes using Scikit-Learn
Feature to image representation using Matplotlib
เธกเธธเธกเธกเธญเธ‡ 104 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Feature to image representation using Matplotlib
Multinomial Naive Bayes using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 674 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Multinomial Naive Bayes using Scikit-Learn
Categorical Naive Bayes using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 1054 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Categorical Naive Bayes using Scikit-Learn
Random Forest using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 1854 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Random Forest using Scikit-Learn
Decision Tree using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 705 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Decision Tree using Scikit-Learn
Support Vector Machine (SVM) using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 1355 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Support Vector Machine (SVM) using Scikit-Learn
Train a CNN with data augmentation - Example using Flowers102 dataset
เธกเธธเธกเธกเธญเธ‡ 2015 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Train a CNN with data augmentation - Example using Flowers102 dataset
K-Nearest Neighbors using Scikit-Learn
เธกเธธเธกเธกเธญเธ‡ 2675 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
K-Nearest Neighbors using Scikit-Learn
Inset plotting using Matplotlib
เธกเธธเธกเธกเธญเธ‡ 686 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Inset plotting using Matplotlib
Calculate the output shape of convolution, deconvolution and pooling layers in CNN
เธกเธธเธกเธกเธญเธ‡ 2086 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™
Calculate the output shape of convolution, deconvolution and pooling layers in CNN

เธ„เธงเธฒเธกเธ„เธดเธ”เน€เธซเน‡เธ™

  • @mohsenpiri4371
    @mohsenpiri4371 6 เธงเธฑเธ™เธ—เธตเนˆเธœเนˆเธฒเธ™เธกเธฒ

    Shame on you, your voice drives me crazy. speak louder!!!!!!!

  • @DanielMillerJohn
    @DanielMillerJohn 12 เธงเธฑเธ™เธ—เธตเนˆเธœเนˆเธฒเธ™เธกเธฒ

    Thank you so much for this amazing video! I need some advice: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). Could you explain how to move them to Binance?

  • @EmEijEi
    @EmEijEi 15 เธงเธฑเธ™เธ—เธตเนˆเธœเนˆเธฒเธ™เธกเธฒ

    Thanku! After facing a lot of incompatibility error, who would've thought that it will all be solved by a utube videos ๐Ÿ˜„

  • @AselHidallearachchi-c8p
    @AselHidallearachchi-c8p 2 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    what is the difference between DDPM vs cDDPM?

    • @MediocreGuy2023
      @MediocreGuy2023 2 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      In Conditional DDPM, the output can be controlled. We can provide a particular label of an image, and the model will generate that exact same image. But, if we don't use conditioning, we can't control the output. Model randomly gives one from the entire dataset.

  • @freenrg888
    @freenrg888 2 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Well. Your mic is definitely mediocre.

    • @MediocreGuy2023
      @MediocreGuy2023 2 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@freenrg888 Agreed

  • @MediocreGuy2023
    @MediocreGuy2023 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    00:00 Sorry, I made a mistake in the title (๐—–๐—ฎ๐˜๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—–๐—น๐—ฎ๐˜€๐˜€๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฟ using Scikit-Learn) of this video in the Jupyter Notebook. Scikit-Learn doesn't have this algorithm. Sorry for the mistake.

  • @boleto7467
    @boleto7467 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Work on your audio

    • @MediocreGuy2023
      @MediocreGuy2023 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@boleto7467 If there is a proper audacity video available on youtube for dealing with keyboard issue, provide the link here. I didn't find one to take care of the keyboard sound.

  • @majidmohammadhosseinzadeh9542
    @majidmohammadhosseinzadeh9542 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Hi there! Great job, man. Your tutorials are amazing. Please keep going and upload more tutorials. If you don't mind, I have a suggestion for you. I believe it would be more beneficial if you explained each section or line while coding. For example, clarify the purpose of each section or each line. One more thing, your voice is not clear. The typing noise is louder than your voice. Thank you so much.

    • @MediocreGuy2023
      @MediocreGuy2023 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@majidmohammadhosseinzadeh9542 Really poor sound and video editing skills, unfortunately. But, thanks for watching.

    • @majidmohammadhosseinzadeh9542
      @majidmohammadhosseinzadeh9542 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      You can't imagine how useful your tutorials are. If possible, could you please prepare a tutorial on ANN regression? What I really appreciate about your work is that you provide the complete code and procedure from start to finish, which is quite unique. I've been searching for a tutorial like this for a while but haven't been able to find one. It would be fantastic if you could create an ANN regression model tutorial.

    • @MediocreGuy2023
      @MediocreGuy2023 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@majidmohammadhosseinzadeh9542 Okay, hopefully.

  • @syedmuzammilahmed6872
    @syedmuzammilahmed6872 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    What if we have Tabular 1D data. Can you please guide how can we implement conditional DDPM on 1D data. Thanks

    • @MediocreGuy2023
      @MediocreGuy2023 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@syedmuzammilahmed6872 I am only familiar with implementations using 2D data. Check out this repository: github.com/yandex-research/tab-ddpm

    • @syedmuzammilahmed6872
      @syedmuzammilahmed6872 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 Actually i have implemented the DDPM on 1D data but now want to apply condition to it. So searching for that Conditioning in 1D DDPM.

    • @MediocreGuy2023
      @MediocreGuy2023 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@syedmuzammilahmed6872 Doesn't your 1D data have labels?

    • @syedmuzammilahmed6872
      @syedmuzammilahmed6872 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 It has labels (yes/no)

    • @MediocreGuy2023
      @MediocreGuy2023 3 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@syedmuzammilahmed6872 Doesn't nn.Embedding work the same way it's working for MNIST? You have to change embedding dimensions I guess based on your dataset requirements.

  • @do_you_interested
    @do_you_interested 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    yo bro that video is awesome. can you make more videos like this!

  • @patrickcraig4608
    @patrickcraig4608 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Do you know of any way to do this for coco annotated data?

    • @MediocreGuy2023
      @MediocreGuy2023 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@patrickcraig4608 I have never worked with COCO dataset but, I found out from the Internet that this dataset is used for object detection and image segmentation tasks. Image segmentation is different from cropping small patches from a large image.

  • @SixuXiao-j9l
    @SixuXiao-j9l 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    ๆŒบๅฅฝ๏ผŒๅฆ‚ๆžœ่ฎฒ่งฃ็š„ๅฃฐ้Ÿณๅคงไธ€็‚นๅฐฑๆ›ดๅฅฝไบ†ใ€‚

    • @MediocreGuy2023
      @MediocreGuy2023 4 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@SixuXiao-j9l Thanks for your comment. I do not have expertise on video and sound editing. Most of my videos have sound issues because I don't know how to effectively remove noise from them. To minimize noise, I had to decrease the sound volume too much.

    • @hubertchang7453
      @hubertchang7453 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 Remove noise with DDPM!

  • @BELLAFaiza-p5z
    @BELLAFaiza-p5z 6 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    good job

    • @BELLAFaiza-p5z
      @BELLAFaiza-p5z 5 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      how cani use input image size 224 pixel help

    • @MediocreGuy2023
      @MediocreGuy2023 5 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@BELLAFaiza-p5z The current code resizes the input to 32x32 pixels. So, 224x224 pixels will also get reduced to that size if you use this code. See the transforms.Compose() section.

    • @BELLAFaiza-p5z
      @BELLAFaiza-p5z 5 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 the code work very good with me but i want use it to generate images with size 224*224 pixel is this possible

    • @MediocreGuy2023
      @MediocreGuy2023 5 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@BELLAFaiza-p5z What is the input image size of your dataset?

    • @BELLAFaiza-p5z
      @BELLAFaiza-p5z 5 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 is 224*224 pixel and its a medical dataset i want generat a new dataset using this code but for the same size can you help me plz

  • @barshneyatalukdar1492
    @barshneyatalukdar1492 7 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    How to save the images in another folder after getting the patches

    • @MediocreGuy2023
      @MediocreGuy2023 7 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      plt.savefig(f'output_dir/{i+1}.jpg', dpi=300, bbox_inches='tight', pad_inches=0); Put this line within for loop. Here, output_dir should be the folder where your images will be saved based on i (number of images).

    • @barshneyatalukdar1492
      @barshneyatalukdar1492 7 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 I need one by one patch that is being generated already am able to save the whole collected patches image as one image but i want it separately not joined. I have inserted the line after ax1[R1, C1].axis('off')

    • @barshneyatalukdar1492
      @barshneyatalukdar1492 7 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      I need to save each image one by one separately if you can show

    • @MediocreGuy2023
      @MediocreGuy2023 7 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@barshneyatalukdar1492 Not like that. You need extra lines of code using a for loop.

    • @MediocreGuy2023
      @MediocreGuy2023 7 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@barshneyatalukdar1492 github.com/randomaccess2023/MG2023/issues/1

  • @guillermovc
    @guillermovc 8 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Thank you for sharing i really aprecciate it, i would try to train the model using a 2D latent space, do you think this architecture will also work for CelebA dataset?

    • @MediocreGuy2023
      @MediocreGuy2023 8 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      I don't think this structure is good enough for Celeb A as they have a much bigger resolution. Even if you resize them, I think a few additional layers are required.

  • @MediocreGuy2023
    @MediocreGuy2023 8 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    36:13 In the scaling term, I accidentally wrote "beta_t" instead of "beta_t_square". I corrected it in the slide. Check out the GitHub address.

  • @ๅ†’้™ฉde่Œ‚่Œ‚
    @ๅ†’้™ฉde่Œ‚่Œ‚ 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Can a PyTorch identify handwritten numbers from 0-99, the dataset is spliced into 0-99 using mnist

    • @MediocreGuy2023
      @MediocreGuy2023 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      In that case, there are 100 classes.

  • @maomao-hc2zt
    @maomao-hc2zt 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Can you help me design a CNN model? I already have a data set

    • @MediocreGuy2023
      @MediocreGuy2023 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      CNN video is available on the channel. Take a look. I will be very busy in the next 2 weeks.

    • @maomao-hc2zt
      @maomao-hc2zt 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023

  • @ๅ†’้™ฉde่Œ‚่Œ‚
    @ๅ†’้™ฉde่Œ‚่Œ‚ 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

    Do you know how to concatenate datasets

    • @MediocreGuy2023
      @MediocreGuy2023 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      Do you mean concatenating images?

    • @ๅ†’้™ฉde่Œ‚่Œ‚
      @ๅ†’้™ฉde่Œ‚่Œ‚ 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 yes yes

    • @ๅ†’้™ฉde่Œ‚่Œ‚
      @ๅ†’้™ฉde่Œ‚่Œ‚ 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      Can I add you as a friend? I come from China and am a beginner. I would like to ask you some questions,โ€‹@@MediocreGuy2023

    • @MediocreGuy2023
      @MediocreGuy2023 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@ๅ†’้™ฉde่Œ‚่Œ‚ In PyTorch, "torch.cat" function is available and in the case of NumPy, it is "numpy.concatenate".

    • @ๅ†’้™ฉde่Œ‚่Œ‚
      @ๅ†’้™ฉde่Œ‚่Œ‚ 9 เธซเธฅเธฒเธขเน€เธ”เธทเธญเธ™เธเนˆเธญเธ™

      @@MediocreGuy2023 nonono l have more questions

  • @StephenWightTn
    @StephenWightTn เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    You mentioned around 16:50 that you weren't sure why train loss was much higher than test loss. The reason is because of the L1 term. The returned loss value for train includes the L1 term. The returned loss value test does not. If you want comparable values between train and test, you need to either include the L1 term in the test batch function, or you need to only return the classification loss from the train batch function. Otherwise, a good explanation!

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      Thanks for the explanation.

  • @fishersmen
    @fishersmen เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    Thank you very much for all your time into these lessons. I have found it more helpful than lectures by MIT professors.

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      LOL. Are you serious?

  • @Slobodanka.Kirovska
    @Slobodanka.Kirovska เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    This help me, and your git hub code, Thanks

  • @NuskaGirru
    @NuskaGirru เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    thank you! this was very helpful!

  • @imenelj7341
    @imenelj7341 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    HI again, I want to kindly ask if you could consider doing a video about 1)the selection of clusters by computing the eigengap scores and plotting them as an eigengap plot.2) the use of normalized mutual information (NMI) score and Rand index to quantify the overlap between discovered and ground truth clusters. Thanks in advance.

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      I will try.

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      Does this link help you? github.com/ciortanmadalina/high_noise_clustering/blob/master/spectral_clustering.ipynb

  • @anneryan4051
    @anneryan4051 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    Thank you! This is the best patchify example I've found.

  • @imenelj7341
    @imenelj7341 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    I'm grateful for your video, and I'm presently exploring spectral clustering for data analysis for my Ph.D. dissertation in agriculture. Given my limited experience in this area, I'm curious if you could kindly consider sharing the scripts employed in your video and to share more videos about how to identify cluster sizes and how to validate them and how to do Character analysis of identified clusters too . thanks in advance .

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      I have a nightmare schedule till November 2. But, I will try to provide the script for this video either today or tomorrow hopefully.

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      github.com/randomaccess2023/MG2023/tree/main/Video%2037

    • @imenelj7341
      @imenelj7341 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      @@MediocreGuy2023 I wish you all the best for your studies and thank you so much for sharing this.

  • @mashfiqulhuqchowdhury6906
    @mashfiqulhuqchowdhury6906 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    This is a good channel and clearly explined. Can I get the code in the Github Repository?

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      I appreciate your comment. In my lab, we have distributed servers (you can notice the name JupyterHub). For this reason, I haven't used GitHub to store the code. But, I can upload just this code tonight since you asked for it hopefully within the next 6-7 hours. I will mention you when it is available.

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      github.com/randomaccess2023/MG2023/tree/main/Video%2023 You can find the code here.

    • @mashfiqulhuqchowdhury6906
      @mashfiqulhuqchowdhury6906 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      @@MediocreGuy2023, Thank you very much. HonestlyThis is truly helpful. I will watch all the videos you have uploaded. Thanks again.

  • @MediocreGuy2023
    @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    At 06:19, I performed preprocessing but forgot to use the scaled features later. I have corrected this mistake in the code that I shared on GitHub. Check that out.

  • @MediocreGuy2023
    @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    Within 10:11 - 10:43, I scaled the features but eventually forgot to use them later. It's better not to scale the features for this example. It seems unscaled features work better in calculating AIC.

  • @_kkaai
    @_kkaai เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    Thank you

  • @fahimmuntasirniloy
    @fahimmuntasirniloy เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    Thanks a lot. Looking forward to more videos.

  • @abhinavatram1277
    @abhinavatram1277 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    BTW good content related to Data Science

  • @abhinavatram1277
    @abhinavatram1277 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    how can I get this jupyter file.

    • @MediocreGuy2023
      @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

      github.com/randomaccess2023/MG2023/tree/main/Video%205

  • @MediocreGuy2023
    @MediocreGuy2023 เธ›เธตเธ—เธตเนˆเนเธฅเน‰เธง

    26:05 ---> I made a mistake here; Train loss: {train_per_epoch_loss} should be the correct line but I wrongly wrote Train loss: {test_per_epoch_loss}. Remember to correct this portion.