dr3213
dr3213
  • 142
  • 132 092
An Inorganic Chemistry Problem
An inorganic chemistry scheme problem which focuses on reaction between noble gases and metals.
From Edward Jin's Website.
Join my discord: discord.gg/uqUEJmhmG7
Feel free to suggest integrals or other problems for me to try in the comments!
Like and subscribe if you enjoyed the video and want to see more content like this!
Thanks for watching!
มุมมอง: 225

วีดีโอ

Inverse Trigonometric and Hyperbolic Integral! (ft: an cool formula)
มุมมอง 2788 หลายเดือนก่อน
Integral from 0 to infinity of xarctan(csch(pi*x/2))/(1 x^2) dx evaluated using trigonometric identities, the dirichlet beta function, and integral formulas. Suggested by Elmonious. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for w...
Another Laplace Transform Integral
มุมมอง 3809 หลายเดือนก่อน
Integral from 0 to infinity of sinxarctanx/(1 x^2) dx evaluated using the laplace transform, gamma function, and exponential integral functions. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
Finding the Area of a Rotated Ellipse
มุมมอง 8269 หลายเดือนก่อน
Suggested by Sherlock Holmes (in pursuit of kachoris). Finding the area of the ellipse given by x^2/a^2 y^2/b^2 -2xycosphi/ab = sin^2(phi) without calculus using geometric transformations and formulae. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content lik...
Decimation of a Devilish Integral
มุมมอง 30711 หลายเดือนก่อน
Integral from 0 to infinity of sin(x/2)(cos(sinx)-2sinxsin(sinx))e^cosx)/(x*(5sin^2(x) cos^2(x)) dx evaluated using contour integration and cool summations :). Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
My Solutions to AIME I 2024
มุมมอง 39111 หลายเดือนก่อน
Problems 1-4, 6-7, and 9 from AIME I 2024 solved using a variety of methods. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
Solving a Bizarre Bessel Integral
มุมมอง 39211 หลายเดือนก่อน
Integral from 0 to infinity of sqrt(pi/(x^2 1)) - e^(x^2/8)K_0(x^2/8)/2 dx, where K_0(x) is the modified bessel function of the second kind of order zero, evaluated using integral formulas, clever substitutions, and double integration. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the vide...
MIT Integration Bee 2024 Semifinals Solutions
มุมมอง 1.7K11 หลายเดือนก่อน
Full solutions to all the problems from the MIT Integration Bee Semifinals 2024, including tiebreakers. Showcases a variety of interesting integration methods! Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
MIT Integration Bee 2024 Finals Solutions
มุมมอง 4.2K11 หลายเดือนก่อน
Full solutions to all the problems from the MIT Integration Bee Finals 2024, including tiebreakers and lightning rounds. Showcases a variety of interesting integration methods! Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
I didn't think I could solve this ASTOUNDING Integral...
มุมมอง 40111 หลายเดือนก่อน
Integral of x/(x^2 (ln(2sinx))^2) dx from 0 to pi evaluated using complex numbers, natural logarithm tricks, partial fractions, and two absolutely crazy contour integrals. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
A Deceptive Integral and Contour Closure
มุมมอง 30011 หลายเดือนก่อน
Integral of e^-x^2 cosx coshx dx from 0 to infinity evaluated using the gaussian integral and some clever substitutions, along with a discussion of the method of closing the contour to evaluate integral formulas of complex numbers. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video an...
Integrating 1/(x^5+1)
มุมมอง 7K11 หลายเดือนก่อน
Integral of 1/(x^5 1) evaluated using complex numbers, the cover up method, and clever reorganization of terms. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
Integration Bee Prep: Limits!
มุมมอง 47911 หลายเดือนก่อน
6 Worked examples from MIT Integration bee, as well as a lesson on strategy for taking on tough limit integrals which are common in integration bees. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
Steps and Resources for Learning Integration
มุมมอง 552ปีที่แล้ว
Steps and Resources that will be important for learning advanced integration, whether its to prep for an integration bee, a high level class, or just for fun! Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! Thanks for watching!
Inverse Functions in Integration...
มุมมอง 1.6Kปีที่แล้ว
A brief discussion on the properties of inverse functions in integration, the applications of visual interpretations of common formulas, some practice problems, and an integration bee example. Join my discord: discord.gg/uqUEJmhmG7 Feel free to suggest integrals or other problems for me to try in the comments! Like and subscribe if you enjoyed the video and want to see more content like this! T...
How to use the Gamma Function for Integration!
มุมมอง 3.1Kปีที่แล้ว
How to use the Gamma Function for Integration!
How to use the Weierstrass Substitution to solve Trig Integrals!
มุมมอง 410ปีที่แล้ว
How to use the Weierstrass Substitution to solve Trig Integrals!
A Useful Formula
มุมมอง 318ปีที่แล้ว
A Useful Formula
How to use King's Property to Solve Definite Integrals
มุมมอง 1.3Kปีที่แล้ว
How to use King's Property to Solve Definite Integrals
WORKED SOLUTIONS to Cambridge Integration Bee 2023 R1
มุมมอง 638ปีที่แล้ว
WORKED SOLUTIONS to Cambridge Integration Bee 2023 R1
Double Integral? No Problem
มุมมอง 344ปีที่แล้ว
Double Integral? No Problem
Fresnel-like Integral Destroyed by the Gamma Function!
มุมมอง 330ปีที่แล้ว
Fresnel-like Integral Destroyed by the Gamma Function!
Approximating an exponential boi by hand
มุมมอง 366ปีที่แล้ว
Approximating an exponential boi by hand
Using the Lobachevsky Integral Formula on an integral
มุมมอง 487ปีที่แล้ว
Using the Lobachevsky Integral Formula on an integral
Laplace Transform Integrals are Back!
มุมมอง 283ปีที่แล้ว
Laplace Transform Integrals are Back!
AWESOME Generalized Integral with Crazy Results
มุมมอง 264ปีที่แล้ว
AWESOME Generalized Integral with Crazy Results
StackExchange Roulette Ep. 1
มุมมอง 295ปีที่แล้ว
StackExchange Roulette Ep. 1
A Short Hyperbolic Integral
มุมมอง 220ปีที่แล้ว
A Short Hyperbolic Integral
Laplace Transform of 1/(x^2+1)
มุมมอง 761ปีที่แล้ว
Laplace Transform of 1/(x^2 1)
BMT 2022 Calc Round Livesolve
มุมมอง 238ปีที่แล้ว
BMT 2022 Calc Round Livesolve

ความคิดเห็น

  • @lampham5630
    @lampham5630 4 วันที่ผ่านมา

    my brain is gonna explode

    • @toara
      @toara วันที่ผ่านมา

      same 😂

  • @edwardperry5041
    @edwardperry5041 5 วันที่ผ่านมา

    Dude, I literally can't read your handwriting. I'm sorry, I'm not trying to be mean. Please, if you managed to improve your handwriting it would make this so much better.

  • @condor7001
    @condor7001 9 วันที่ผ่านมา

    At 9:15 I think you can alternately turn the sum into a product inside the log, then use euler's factorization of the sine function ->account for the lower bound being 2 instead of one, and take a limit to get the same answer

  • @slavinojunepri7648
    @slavinojunepri7648 9 วันที่ผ่านมา

    This video popped up again on my TH-cam, and I really enjoy seeing this monster integral destroyed by Feynman's technique. Good work once again!

  • @slavinojunepri7648
    @slavinojunepri7648 9 วันที่ผ่านมา

    Excellent

  • @keshavchauhan6290
    @keshavchauhan6290 16 วันที่ผ่านมา

    How do I check my answers?

    • @danielrosado3213
      @danielrosado3213 9 วันที่ผ่านมา

      Hi, and sorry for the late reply. I don't have written solutions for these problems, but you can always check integral values with a calculator like wolframalpha or desmos. If you have any questions about any of the problems, I'm happy to walk you through a solution or give you the answer.

  • @lumis-simul
    @lumis-simul 18 วันที่ผ่านมา

    There's a formula for this using just the x and y intercepts and extremities of the ellipse we use a lot in elliptic polarization so never really thought about this till now. I don't see anywhere else this could be used apart from solid state physics and transmission optics. Was surprised at the solution being so involved and requiring factorisation, but a nice approach nonetheless. I'd recommend this video to a few students but not my colleagues because of the handwriting(they would mock me to oblivion because of it). If you could make a typed version for the video it would be nice but going on the same topic again would be a bit too much to ask. Anyways good video and best wishes for your future👍

  • @sherifffruitfly
    @sherifffruitfly 22 วันที่ผ่านมา

    Just saying: integration by parts is pretty OP. Just ask Euler/Basel problem/Riemann hypothesis.

  • @ben_adel3437
    @ben_adel3437 27 วันที่ผ่านมา

    Some of these looked approchable while others just made me look and cry

  • @cdkw2
    @cdkw2 27 วันที่ผ่านมา

    The title is a lie, I didnt get the factorial of zeta(4) :(

  • @cdkw2
    @cdkw2 27 วันที่ผ่านมา

    I swear to god I HATE CHEMISTRY!!!!!!!!!!!

  • @AndyBaiduc-iloveu
    @AndyBaiduc-iloveu หลายเดือนก่อน

    Can you tell me where we learn about the lapse transform? Harmonic Analysis? I've watched a few videos on it at khan academy but I want to go deeper.

    • @danielrosado3213
      @danielrosado3213 หลายเดือนก่อน

      Do you mean the laplace transform? I would suggest starting with the wikipedia page, as from there you can find out what you want to learn more about, whether through youtube or a formalized textbook. And by Harmonic analysis, I assume you are referring to the representation of functions in the frequency domain. If you wish to learn more about this, I suggest looking into the Fourier Transform and Fourier Series. There are lots of resources out there, and they aren't too tough to find (though I regret that I haven't studied harmonic analysis and therefore I can't name specific resources for you).

    • @AndyBaiduc-iloveu
      @AndyBaiduc-iloveu หลายเดือนก่อน

      Thank you! I'll dive into it right away!

  • @Ourhealingchannel
    @Ourhealingchannel หลายเดือนก่อน

    1. In the Gamma(a+bi) equation, the convergence condition (a>0) must be mentioned. 2. Gamma(i+1) is not equal to i Gamma(i) in the original equation because of a=0. Gamma(x+1) = x Gamma(x) is valid only in the x>0 condition.

    • @danielrosado3213
      @danielrosado3213 หลายเดือนก่อน

      @@Ourhealingchannel we are discussing the analytic continuation of the gamma function, not the original gamma integral which gives values for the gamma function for x>0 on the real line. For values where the integral doesn’t converge, we can apply the functional equation to find the value of the function, which is based on the integral, but not dependent on its convergence.

  • @sudhamishra6596
    @sudhamishra6596 2 หลายเดือนก่อน

    Your writtin' absolute trash, write properly, what you write ain't visible clearly

  • @sudhamishra6596
    @sudhamishra6596 2 หลายเดือนก่อน

    Sahih al-Bukhari 230 Narrated 'Aisha: I used to wash the semen off the clothes of the Prophet and even then I used to notice one or more spots on them. حَدَّثَنَا قُتَيْبَةُ، قَالَ حَدَّثَنَا يَزِيدُ، قَالَ حَدَّثَنَا عَمْرٌو، عَنْ سُلَيْمَانَ، قَالَ سَمِعْتُ عَائِشَةَ، ح وَحَدَّثَنَا مُسَدَّدٌ، قَالَ حَدَّثَنَا عَبْدُ الْوَاحِدِ، قَالَ حَدَّثَنَا عَمْرُو بْنُ مَيْمُونٍ، عَنْ سُلَيْمَانَ بْنِ يَسَارٍ، قَالَ سَأَلْتُ عَائِشَةَ عَنِ الْمَنِيِّ، يُصِيبُ الثَّوْبَ فَقَالَتْ كُنْتُ أَغْسِلُهُ مِنْ ثَوْبِ رَسُولِ اللَّهِ صلى الله عليه وسلم، فَيَخْرُجُ إِلَى الصَّلاَةِ وَأَثَرُ الْغَسْلِ فِي ثَوْبِهِ بُقَعُ الْمَاءِ‏

  • @jammasound
    @jammasound 2 หลายเดือนก่อน

    I actually saw this in an old "Higher Algebra" book by W.L. Ferrar. Its in the first chapter on Finite Series and is called the "Method of Differences" for calculating certain sums. I Didnt know it had developed into this broader theory.

  • @maxvangulik1988
    @maxvangulik1988 2 หลายเดือนก่อน

    anyone else struggling with #2?

  • @jakeaustria5445
    @jakeaustria5445 2 หลายเดือนก่อน

    Thank You

  • @laplace1139
    @laplace1139 2 หลายเดือนก่อน

    One way to speed up P5 is to just use the generating function of the fibonacci numbers, which is pretty well known. It is 1/(1-x-x^2) and subbing x=1/4 gives 1/(1-(1/4)-(1/16))=16/11, and multiplying by 1/4 gives 4/11 (as we have (1/4)^(n+1) in the sum, not (1/4)^n). I would guess this is what the contestants used to evaluate the sum

  • @royssentongo2754
    @royssentongo2754 3 หลายเดือนก่อน

    at 8:26 minutes, why are you dividing the two equations to eliminate the 2 and why do you then not consider the negative in the second equation after eliminating the 2. I thought that negative is meant to change the signs inside the bracket of that second equation

    • @danielrosado3213
      @danielrosado3213 3 หลายเดือนก่อน

      It would change the signs, but it would change the signs of all the terms. Since it is applied to everything on the left side, and -0 = 0, we can divide both sides by -1 and end up with the same result

  • @christophas
    @christophas 3 หลายเดือนก่อน

    Thanks for your video. It helped me to getting a grasp of the idea of analytic continuation. I have one question though: for the complex function, you transform the gamma integral to integrate t^(a-1) e^(-t) cos(b ln t) dt + i integrate t^(a-1) e^(-t) sin(b ln t) dt (I assume you have a typo in your video, as you write x instead of t for the argument.) This equation, however, gives me some headache: how do you want to evaluate cos(ln t) or sin(ln t) as t -> 0 <=> ln t -> -infty?

    • @danielrosado3213
      @danielrosado3213 3 หลายเดือนก่อน

      @@christophas yes, the function oscillates wildly as t approaches zero. The function is not well behaved, but integrals can be evaluated numerically nonetheless

    • @christophas
      @christophas 3 หลายเดือนก่อน

      @@danielrosado3213 Could you perhaps recommend some resources explaining how this is done?

    • @danielrosado3213
      @danielrosado3213 3 หลายเดือนก่อน

      @@christophas sorry, I don’t really have any resources for this type of thing. If you’re talking about numerical integration, normal methods can be utilized in general as the contributions from wildly oscillating cos or sin of lnt near 0 are negligible

    • @christophas
      @christophas 3 หลายเดือนก่อน

      @@danielrosado3213 Yeah, that's also how I would crudely try to do this: basically, you're splitting the integral into one from 0 to x, x being very small but x>0, and one from x to infty. If you choose x accordingly, like lim_{t -> x} cos(b ln t) = -0, you have a somewhat properly defined integral and a crapy one, where you assume it doesn't really contribute anything. However, this is kinda hand-wavy... But thanks a lot for your fast reply. At least my question is not as stupid as I feared it to be. ^^

    • @danielrosado3213
      @danielrosado3213 3 หลายเดือนก่อน

      @@christophas yea no problem! Asking questions is the best way to learn :)

  • @Ash_0021
    @Ash_0021 3 หลายเดือนก่อน

    Why going in imaginative numbers . Cant we just manipulate the numerator and keep factorising out the denominator?

    • @danielrosado3213
      @danielrosado3213 3 หลายเดือนก่อน

      @@Ash_0021 it is possible, however, you would need to find the two quadratic roots of x^5+1 WITHOUT using trig, and this is much easier said than done (try it yourself, lol). Then, you would need to do a ton of algebra with some nasty numbers. It would take much longer.

    • @Ash_0021
      @Ash_0021 3 หลายเดือนก่อน

      @@danielrosado3213 Yea I have done it recently using partial fractions it was hella longer and irritating but yeah it did work out for me!

  • @SussySusan-lf6fk
    @SussySusan-lf6fk 3 หลายเดือนก่อน

    gamma(1/12) gamma (5/12) can be written as sqrt2 3^(1/4) gamma^2 (1/4) Can you prove it?

  • @RGDot422
    @RGDot422 3 หลายเดือนก่อน

    Hi. Is there any version of the chain rule in discrete calculus?

    • @danielrosado3213
      @danielrosado3213 3 หลายเดือนก่อน

      As far as I am aware, there is no equivalent. This is because (if we have some f(g(n))) g(n+1)-g(n) is not always an integer, and we have no way to relate f(n+a)-f(n) using f’s difference unless a is an integer. Perhaps with some stricter constraints on the types of functions we use there could be some sort of chain rule, but in the general case it doesn’t exist. Thanks for the question!

  • @fengshengqin6993
    @fengshengqin6993 3 หลายเดือนก่อน

    very good!

  • @KshitizMalviya
    @KshitizMalviya 4 หลายเดือนก่อน

    Thanks to the subtitles feature.

  • @PseudoPig
    @PseudoPig 4 หลายเดือนก่อน

    I tried the xlnx/(x^5+1) integral using keyhole contour and now I need to solve the x/(x^5+1). Shall I use another contour integral for that?

    • @danielrosado3213
      @danielrosado3213 4 หลายเดือนก่อน

      Yes, u totally can

    • @PseudoPig
      @PseudoPig 4 หลายเดือนก่อน

      @@danielrosado3213 Thanks!

  • @leofigoboh1611
    @leofigoboh1611 4 หลายเดือนก่อน

    Hello, are you using Obsidian to write?

    • @danielrosado3213
      @danielrosado3213 4 หลายเดือนก่อน

      I use Microsoft whiteboard along with a drawing pad to write

    • @leofigoboh1611
      @leofigoboh1611 4 หลายเดือนก่อน

      @@danielrosado3213 Thanks!

  • @reimannx33
    @reimannx33 4 หลายเดือนก่อน

    Sorry, but your writing is abysmal.

  • @solardale7908
    @solardale7908 4 หลายเดือนก่อน

    maybe you implied it, but for the box contour, its purpose is to enclose just one or a small number of poles (minimizing number of residue calculations) of a function that has a large number of poles, that is, a function that an infinite semicircular half plane contour would require the calculation of a large number (possible infinite) of residues. In other words, a box contour is more suitable than an infinite semicircular half plane, for a function having many, many poles. Really like your videos and learn a lot.

  • @solardale7908
    @solardale7908 4 หลายเดือนก่อน

    two items: 1) it can be very confusing to use x as the variable for parameterization: recommend that variable t be used instead. 2) did not understand branch cut choice at end of video

    • @danielrosado3213
      @danielrosado3213 4 หลายเดือนก่อน

      For the last problem, we need to ensure the branch cut doesn’t cut off or overlap with the contour. Two of the choices are immediately eliminated just from that. Also, we need to make sure that our choice of branch cut doesn’t affect the integrand. In the case of lnx/lnz, we definitely need ln(positive) to be a real number. As such, picking a branch cut which doesn’t include an argument of 0 (such as 3π/2 to 7π/2) will give us that ln(positive) = a real number plus 2πi, which is not ideal (you may still find a correct answer, but there will likely be extra work involved).

  • @mulengachilesheemerick.7265
    @mulengachilesheemerick.7265 4 หลายเดือนก่อน

    too fast💀💀

  • @PseudoPig
    @PseudoPig 4 หลายเดือนก่อน

    How do I approach the sinx/x integral? I tried semicircle, but cannot show that inegral over Г is 0

    • @danielrosado3213
      @danielrosado3213 4 หลายเดือนก่อน

      Remember that the imaginary part of e^iz is sin(z)!

    • @PseudoPig
      @PseudoPig 4 หลายเดือนก่อน

      Thank you, ​@@danielrosado3213! But choosing the right contour seems even more troublesome now. You see, |e^(iRe^(i theta))|=e^(-R sin theta). If we allow theta to be equal to zero, the whole thing will collapse to 1. Then |int over Г| ≤ r *max theta *1/R=max theta≠0. So the circular arc doesn't work. Then what will? Not box, not keyhole, obviously. And we cannot say that it's already parametrised due to z in denominator

    • @danielrosado3213
      @danielrosado3213 4 หลายเดือนก่อน

      @@PseudoPig do you remember Jordan’s lemma? If not, feel free to look it up or go back in the series to check on it

    • @PseudoPig
      @PseudoPig 4 หลายเดือนก่อน

      @@danielrosado3213 To be honest, I didn't want to use it bc I hadn't written dkwn the proof for it. And niw using some video and a couple of my own ideas, I have managed to proove it in the form that you gave us. (given that |f(z)| converges to a number) Now I will merrily use it. Thanks for the very needed push in this direction!

  • @coshy2748
    @coshy2748 4 หลายเดือนก่อน

    Interesting. Today is the first time I've seen integration of an inverse function.

  • @ShajanSuhail
    @ShajanSuhail 5 หลายเดือนก่อน

    Please write clearly I could not able to understand

  • @foxyeipiccolicolpidigenio9099
    @foxyeipiccolicolpidigenio9099 5 หลายเดือนก่อน

    this is so cool!! Thanks a lot!

  • @samyakkumar1135
    @samyakkumar1135 5 หลายเดือนก่อน

    Is there a way to solve it using partial fractions?

    • @danielrosado3213
      @danielrosado3213 5 หลายเดือนก่อน

      Yes, however, you have to find the factors of x^5+1, and they are neither simple nor intuitive to find.

  • @lagnugg
    @lagnugg 5 หลายเดือนก่อน

    personally, i'd put glasser's master theorem in b tier if not one more thing: it applies for infinite series too, as long as it converges, so with taking limits we can also change x+tan(x) to just x. i might've learned it from your channel tho lmao

    • @danielrosado3213
      @danielrosado3213 5 หลายเดือนก่อน

      I didn’t know that! How does that work?

    • @lagnugg
      @lagnugg 5 หลายเดือนก่อน

      @@danielrosado3213 basically like in your video "Glasser's Master Theorem: a Powerful Tool", but to be extra rigorous express tan(x) as a limit of partial sums, then use glasser's master theorem to replace x + the partial sum, then take the limit as it doesn't do anything anymore

    • @danielrosado3213
      @danielrosado3213 5 หลายเดือนก่อน

      @@lagnugg ahhhh I see what you’re saying, I misunderstood what you meant. I thought u meant the trick could be applied on a summation of f(n+1/n)

  • @stayclashy3433
    @stayclashy3433 5 หลายเดือนก่อน

    Thanks

  • @looney1023
    @looney1023 5 หลายเดือนก่อน

    The logarithmic form of Stirling's approximation for large n is super useful and succinct, especial in statistical mechanics. log(n!) ~ n*log(n) - n

  • @stayclashy3433
    @stayclashy3433 5 หลายเดือนก่อน

    Any resources or reference books for this topic?

    • @danielrosado3213
      @danielrosado3213 5 หลายเดือนก่อน

      Sorry, this is a less common topic, and im not familiar with a text that is very helpful for this

    • @stayclashy3433
      @stayclashy3433 5 หลายเดือนก่อน

      @@danielrosado3213 alright , thanks

  • @stayclashy3433
    @stayclashy3433 5 หลายเดือนก่อน

    Tysm

  • @abc-nd2xt
    @abc-nd2xt 6 หลายเดือนก่อน

    I solved the first integral like this. S = Sum (-1)^k /(2k+1)^3 k from 0 to inf and I is the integral. Did the same thing as you to get I = 8S. Then I = 2 Int (x^2)/cosh(x) from 0 to inf, substitute x = arcosh(t) = ln(t+sqrt(t^2-1)), dx=(t+sqrt(t^2-1))/(t^2-1+t*sqrt(t^2-1)) dt. So I = 2 Int (ln(t+sqrt(t^2-1))^2)*(t+sqrt(t^2-1))/(t*(t^2-1+t*sqrt(t^2-1))) dt t from 1 to inf. Now t+sqrt(t^2-1)=u, (u^2-1)/2=t^2-1+t*sqrt(t^2-1), t=(u^2+1)/(2u), dt=(u^2-1)/(2u^2)du. So I = 4 Int (ln(u)^2)/(1+u^2) du u from 1 to inf. Split the integral like int from 0 to inf - int from 0 to 1. The Integral from 0 to 1 is 2S, power series for 1/(1+u^2) and Int x^m (ln(x)^n) formula. The Integral from 0 to inf: f(t)= Int (u^(t-1))/(1+u^2) du from 0 to inf. Write 1/(1+u^2) as Sum (-1)^k/k! * gamma(k+1) * (-1)^k * cos(pi*k/2) u^k, use ramanujans master theorem, f(t)=pi/(2sin(pi*t/2)) calculate f''(t=1)=pi^3/8, so I = pi^3/2-8S and I=8S, we get S=pi^3/32 and I = pi^3/4

  • @BenjaminLinChemistry
    @BenjaminLinChemistry 6 หลายเดือนก่อน

    WAH, SO GOOD!

  • @PseudoPig
    @PseudoPig 6 หลายเดือนก่อน

    At 8:00 what shall I use to solve the third integral? I have never worked with inverse trigs in comlex world, so am clueless here. About others are the numbers 2 and 4 the only ones that cannot be done?

    • @danielrosado3213
      @danielrosado3213 6 หลายเดือนก่อน

      You are right about 2 and 4. You may use the fact that arctan(z) = i/2 log(i+z/i-z)

    • @PseudoPig
      @PseudoPig 6 หลายเดือนก่อน

      @@danielrosado3213 Thank you very much for your help. The first versoin of your reply was actually more helpful, because you helped me find a mistake.

    • @PseudoPig
      @PseudoPig 6 หลายเดือนก่อน

      I have dealt with the logs by assuming that as R approaches infinity, log((i+R e^(i theta))/(i-R e^(i theta)))≈Log(R)+i theta -Log(R)-(iπ + i theta)=-iπ. How am I supposed to actually do that?

    • @danielrosado3213
      @danielrosado3213 หลายเดือนก่อน

      @@PseudoPig Hi. Sorry that I did not see this until now. You can use the fact that log(z) = ln|z| + arg(z), and hence |log(z)| <= |ln|z|| + 2pi. This should work out just nicely in that case, since on the inside of the log, the Rs dominate, making the inside expression simpler.

    • @PseudoPig
      @PseudoPig หลายเดือนก่อน

      @@danielrosado3213 Thanks, that is very helpful

  • @AlexTheGranner
    @AlexTheGranner 6 หลายเดือนก่อน

    Respect

  • @PseudoPig
    @PseudoPig 6 หลายเดือนก่อน

    When I solved the problem 7 (the one with tan), I had to assume that the order of the poles is 1. Is that correct and why can I do that?

    • @danielrosado3213
      @danielrosado3213 6 หลายเดือนก่อน

      This is correct, and it can be shown using the fact that the limit (x-pi/2)tanx as x goes to pi/2 is finite

    • @PseudoPig
      @PseudoPig 6 หลายเดือนก่อน

      @@danielrosado3213 That makes sense, thank you very much for your response! Shall I do the same with gamma one? I am going to write it out as infinite sum of residues and figure something out.

    • @danielrosado3213
      @danielrosado3213 6 หลายเดือนก่อน

      @@PseudoPig exactly how it should be done!

  • @bahiihab-y2r
    @bahiihab-y2r 6 หลายเดือนก่อน

    daniel sorry but how you can get the integral of the cambridge integration

    • @danielrosado3213
      @danielrosado3213 6 หลายเดือนก่อน

      The past integrals are available through the Cambridge integration discord server which is accessible through the online website.

  • @krishpandey854
    @krishpandey854 7 หลายเดือนก่อน

    Im trying these as a high school student, so I was not aware of the cubic formula, heres a soln for Q.4 without it- y= integrand y^3 = 2+3(x)(integrand) y^3=2+3xy, value of y at x=1 can be found by just putting x=1 in the original integrand rather than solving the cubic. Value at x= -1/3 is best found by solving the cubic After this, we can do what you did or we can think of x(y) as inverse function of y(x) and then hse this - en.m.wikipedia.org/wiki/Integral_of_inverse_functions Btw the hyper oscillation observation in Q.4 was really good. I similified it to the final term, but couldnt notice that the sin and cos terms would 'average out' I havent studied hyperbolic trig, so I used the tan thetha subsitution for Q.3 I got all of them except for Q.2,3 and couldnt do the last step in tiebreaker 4. Is there a way to solve Q.2 without using college level maths (feyman's technique) ans to solve Q.3 without using complex analysis. I mean, I am pretty good at the basics of complex numbers ( roots of unity, geometry, euler formula etc.) but dont have any expirience in using complex numbers in integration.....