Alp Uzman
Alp Uzman
  • 31
  • 2 530
MATH 4800-001 FALL 2024 - Week 12 - Invariant Measures 1
---
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics.
---
Table of Contents:
00:00:00 1 of 2
00:00:42 recall: s-Hausdorff outer measure
00:09:11 exercise
00:10:07 exercise
00:11:55 exercise
00:13:14 exercise
00:15:02 alpha-Holder constant Lip_alpha(f) of f
00:17:26 exercise
00:17:50 exercise
00:18:16 exercise: snowflaking a metric, ultrametric, strong triangular inequality
00:21:07 exercise: any d_theta metric is an ultrametric
00:21:35 applications of ultrametrics; trees, fractals, Thompson groups
00:25:09 lemma: the s-Hausdorff outer measure of f(A) is bounded from above by Lip_alpha(f)^s times the s alpha-Hausdorff outer measure of A
00:27:53 proof of lemma
00:29:12 exercise
00:29:33 proof continued
00:35:47 more on lemma [correction: for f Lipschitz one still has a multiplicative constant possibly, but outer measures for the same s value are compared]
00:36:33 phase transition for H^s(A) for A fixed and s variable
00:45:51 Hausdorff dimension dim_H(A)
00:48:18 s-Hausdorff outer measure of A for s = dim_H(A) could be 0, infinity, or a finite positive number
00:50:55 exercise: Hausdorff dimension of f(A) for f alpha-Holder
00:51:25 exercise: Hausdorff dimension is invariant under bi-Lipschitz homeos
00:53:49 exercise: Hausdorff dimension bounds from above Lebesgue covering dimension, lower Minkowski dimension bounds from above Hausdorff dimension
00:54:30 exercise: upper bounds for the Minkowski and Hausdorff dimensions of attractors of B-IFSs
01:00:58 theorem: Moran-Hutchinson Dimension Formula; Bowen formula [pressure function to be corrected]
01:16:31 2 of 2
01:17:29 a correction: pressure function of a B-IFS
01:18:02 recap of Moran-Hutchinson
01:24:15 proof of Moran-Hutchinson; the upper bound
01:28:12 exercise
01:28:45 proof continued
01:42:29 machinery for Moran-Hutchinson; the lower bound: mass distribution principle and covering lemma
01:45:00 prop: mass distribution principle [first attempt at statement]
01:49:21 more on the Hausdorff dimension as a phase transition
01:54:35 proof of prop
02:08:32 prop: mass distribution principle [second attempt at statement]
02:12:13 prop: mass distribution principle [third attempt at statement]
02:14:53 covering lemma [first attempt at statement]
02:25:24 covering lemma in English
02:28:39 proof of covering lemma
---
Links:
More on Thompson's Groups:
th-cam.com/video/F1cSHyXLSnk/w-d-xo.html
th-cam.com/video/m8NXIV2NduU/w-d-xo.html
th-cam.com/video/wYIb__FXuEc/w-d-xo.html
th-cam.com/video/GUjl-_BjD8I/w-d-xo.html
th-cam.com/video/IWftDTV0ppo/w-d-xo.html
th-cam.com/video/bAs-InHEUeU/w-d-xo.html
th-cam.com/video/wRp4Ud-DW0s/w-d-xo.html
---
License:
CC BY-NC-SA 4.0
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
creativecommons.org/licenses/by-nc-sa/4.0/
Alp Uzman
alpuzman.github.io/
มุมมอง: 6

วีดีโอ

MATH 4800-001 FALL 2024 - Week 11 - Dimension Theory 3
มุมมอง 2119 ชั่วโมงที่ผ่านมา
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:01:46 more on the heuristic for Moran-Hutchinson formula for Minkowski dimension 00:17:17 some measure theory 00:23:31 sigma-algebra 00:26:33 measurable subset 00:28:00 measurable space = set wit...
MATH 4800-001 FALL 2024 - Week 10 - Dimension Theory 2
มุมมอง 2514 วันที่ผ่านมา
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:01:53 recap: Lebesgue covering dimension dim_L 00:03:59 exercise: Lebesgue dimension of emptyset is -1 00:04:20 exercise: Lebesgue dimension of of a finite set is 0 00:04:57 subsets of Lebesgue d...
MATH 4800-001 FALL 2024 - Week 9 - Dimension Theory 1
มุมมอง 10621 วันที่ผ่านมา
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:03:01 exercise 00:03:53 exercise 00:06:24 lifting procedure for B-IFS's 00:11:23 exercise 00:11:52 lifting procedure continued 00:17:58 exercise 00:19:31 exercise 00:19:54 graph of a function 00:...
Overlapping Fractal Tilings and The Phantom - MATH 4800 Talk
มุมมอง 1121 วันที่ผ่านมา
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. We were fortunate to have Prof. Michael Barnsley give a talk on the applications of iterated function systems on October 17, 2024. Abstract: An example involving an Iterated Function System (IFS) of two maps, whose attractor is a lea...
MATH 4800-001 FALL 2024 - Week 8 - Topological & Symbolic Dynamics 3
มุมมอง 7328 วันที่ผ่านมา
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:00:43 syllabus update 00:01:10 final report and presentation 00:03:10 recall the setup for addresses of points in the attractor of a B-IFS 00:04:27 more on the cocycle for B-IFSs 00:05:48 example...
MATH 4800-001 FALL 2024 - Week 7 - Topological & Symbolic Dynamics 2
มุมมอง 425หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:00:40 example: coding of doubling map 00:06:10 exercise 00:07:16 exercise 00:07:56 example continued 00:09:10 how to think of two points in shift space being close to each other 00:15:54 example ...
Arithmeticity of Smooth Maximal Rank Positive Entropy Actions of R^k
มุมมอง 36หลายเดือนก่อน
This is my defense of my PhD dissertation in mathematics at Penn State. The defense was on February 24, 2023. Abstract: We prove an arithmeticity theorem in the context of nonuniform measure rigidity. Adapting machinery developed by A. Katok and F. Rodriguez Hertz [J. Mod. Dyn. 10 (2016), 135-172; MR3503686] for Z^k systems to R^k systems, we show that any maximal rank positive entropy system o...
MATH 4800-001 FALL 2024 - Week 6 - Topological & Symbolic Dynamics 1
มุมมอง 46หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:00:26 recap and discussion of Banach Contraction Principle 00:03:11 example 00:04:37 exercise: when Lip(f) is less than or equal to 1 00:06:34 exercise: when f is contractive 00:08:12 exercise: a...
MATH 4800-001 FALL 2024 - Week 5 - Iterated Function Systems 2
มุมมอง 94หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:00:34 five perspectives for iterated function systems: monoid, Hutchinson op, cocycle, random walk, Markov op 00:01:36 some algebraic structures: monoids (aka semigroups), groups of transformatio...
MATH 4800-001 FALL 2024 - Week 4 - Iterated Function Systems 1
มุมมอง 432 หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:00:39 exercise: functoriality of "hyperspace of" operation H 00:01:33 inner Painleve-Kuratowski limit of a sequence of subsets 00:02:37 heuristic for limit of a sequence of subsets: limit set sho...
MATH 4800-001 FALL 2024 - Week 3 - Metric Spaces 3
มุมมอง 962 หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents: 00:00:00 1 of 2 00:00:42 two corrections 00:03:14 proof: closed and totally bounded implies compact 00:06:38 wlog (without loss of generality), exercise 00:07:39 proof continued 00:19:06 exercise 00:19:59 hyperspac...
MATH 4800-001 FALL 2024 - Week 2 - Metric Spaces 2
มุมมอง 1142 หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Table of Contents:: 00:00:00 1 of 2 00:00:22 on weekly reports 1-14 00:09:03 uses of Holder condition: absolute continuity of stable manifolds, dimension preservation 00:11:45 homeomorphism, bi-uniform, bi-Lipschitz, bi-Holder homeom...
MATH 4800-001 FALL 2024 - Week 1 - Metric Spaces 1
มุมมอง 1462 หลายเดือนก่อน
This is MATH 4800-001, the introduction to mathematics research for undergraduates class at the University of Utah, which focuses on fractal geometry and dynamics. Chapters: 00:00:00 1 of 2 00:00:10 syllabus 00:10:43 iterated function systems (IFS), Cantor set, Sierpinski carpet, attractors 00:16:20 syllabus continued 00:17:17 dimension as the exponent of a power law 00:20:45 syllabus continued...
MATH 2270-002 SPRING 2024 - Week 14 - PageRank
มุมมอง 666 หลายเดือนก่อน
This is MATH 2270-002, the introductory linear algebra class at the University of Utah. View the complete course: github.com/AlpUzman/MATH_2270_002_SPRING_2024 The lectures on week 14 roughly correspond to sections 5.8-9 and 10.1-2 in Linear Algebra and Its Applications (6e) by Lay, Lay & McDonald. Table of Contents: 00:00:00 1 of 4 00:01:23 Least Squares (aka Mean aka Von Neumann) Ergodic Theo...
MATH 2270-002 SPRING 2024 - Week 13 - Linear Dynamics
มุมมอง 767 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 13 - Linear Dynamics
MATH 2270-002 SPRING 2024 - Week 12 - More Spectral Theory
มุมมอง 327 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 12 - More Spectral Theory
MATH 2270-002 SPRING 2024 - Week 11 - Orthogonality
มุมมอง 717 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 11 - Orthogonality
MATH 2270-002 SPRING 2024 - Week 10 - Spectral Theory
มุมมอง 1927 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 10 - Spectral Theory
MATH 2270-002 SPRING 2024 - Week 9 - Signal Processing
มุมมอง 778 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 9 - Signal Processing
MATH 2270-002 SPRING 2024 - Week 8 - Linear Coordinates
มุมมอง 548 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 8 - Linear Coordinates
MATH 2270-002 SPRING 2024 - Week 7 - Vector Spaces
มุมมอง 1368 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 7 - Vector Spaces
MATH 2270-002 SPRING 2024 - Week 6 - Determinants
มุมมอง 788 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 6 - Determinants
MATH 2270-002 SPRING 2024 - Week 5 - Computer Graphics
มุมมอง 599 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 5 - Computer Graphics
MATH 2270-002 SPRING 2024 - Week 4 - Linear Subspaces
มุมมอง 579 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 4 - Linear Subspaces
MATH 2270-002 SPRING 2024 - Week 3 - Algebra with Matrices
มุมมอง 539 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 3 - Algebra with Matrices
MATH 2270-002 SPRING 2024 - Week 2 - Linear Transformations
มุมมอง 659 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 2 - Linear Transformations
MATH 2270-002 SPRING 2024 - Week 1 - Systems of Linear Equations
มุมมอง 19210 หลายเดือนก่อน
MATH 2270-002 SPRING 2024 - Week 1 - Systems of Linear Equations
The Keane-Smorodinsky Proof of Ornstein's Theorem, Talk 3 of 3 [unedited]
มุมมอง 1911 หลายเดือนก่อน
The Keane-Smorodinsky Proof of Ornstein's Theorem, Talk 3 of 3 [unedited]
The Keane-Smorodinsky Proof of Ornstein's Theorem, Talk 2 of 3 [unedited]
มุมมอง 1611 หลายเดือนก่อน
The Keane-Smorodinsky Proof of Ornstein's Theorem, Talk 2 of 3 [unedited]

ความคิดเห็น

  • @dagi135
    @dagi135 7 หลายเดือนก่อน

    How are we supposed to see the board?

    • @alpuzman
      @alpuzman 7 หลายเดือนก่อน

      Switching the resolution to 1080p and zooming in on the part that is hard to read could help. I am often narrating what I am writing down, so that should help also. Alternatively if it's a short piece if you can tell me which part of the board is not visible I can write here what I (probably) wrote. Thanks for the comment, going forward I'll try to write more legibly.