- 52
- 11 908
NAIST Robot Learning Lab
เข้าร่วมเมื่อ 10 ม.ค. 2019
Visit our lab for more information! sites.google.com/view/naist-robot-learning-jp
Cutting Sequence Diffuser: Sim-to-Real Transferable Planning for Object Shaping by Grinding
Accepted for IEEE Robotics and Automation Letters (RA-L) 2024
IEEE: ieeexplore.ieee.org/document/10806643
arXiv: arxiv.org/abs/2412.14417
Project page: t-hachimine.github.io/csd/
Author list:
Takumi Hachimine*, Jun Morimoto, and Takamitsu Matsubara
Abstract:
Automating object shaping by grinding with a robot is a crucial industrial process that involves removing material with a rotating grinding belt. This process generates removal resistance depending on such process conditions as material type, removal volume, and robot grinding posture, all of which complicate the analytical modeling of shape transitions. Additionally, a data-driven approach based on real-world data is challenging due to high data collection costs and the irreversible nature of the process. This paper proposes a Cutting Sequence Diffuser (CSD) for object shaping by grinding. The CSD, which only requires simple simulation data for model learning, offers an efficient way to plan long-horizon action sequences transferable to the real world. Our method designs a smooth action space with constrained small removal volumes to suppress the complexity of the shape transitions caused by removal resistance, thus reducing the reality gap in simulations. Moreover, by using a diffusion model to generate long-horizon action sequences, our approach reduces the planning time and allows for grinding the target shape while adhering to the constraints of a small removal volume per step. Through evaluations in both simulation and real robot experiments, we confirmed that our CSD was effective for grinding to different materials and various target shapes in a short time.
IEEE: ieeexplore.ieee.org/document/10806643
arXiv: arxiv.org/abs/2412.14417
Project page: t-hachimine.github.io/csd/
Author list:
Takumi Hachimine*, Jun Morimoto, and Takamitsu Matsubara
Abstract:
Automating object shaping by grinding with a robot is a crucial industrial process that involves removing material with a rotating grinding belt. This process generates removal resistance depending on such process conditions as material type, removal volume, and robot grinding posture, all of which complicate the analytical modeling of shape transitions. Additionally, a data-driven approach based on real-world data is challenging due to high data collection costs and the irreversible nature of the process. This paper proposes a Cutting Sequence Diffuser (CSD) for object shaping by grinding. The CSD, which only requires simple simulation data for model learning, offers an efficient way to plan long-horizon action sequences transferable to the real world. Our method designs a smooth action space with constrained small removal volumes to suppress the complexity of the shape transitions caused by removal resistance, thus reducing the reality gap in simulations. Moreover, by using a diffusion model to generate long-horizon action sequences, our approach reduces the planning time and allows for grinding the target shape while adhering to the constraints of a small removal volume per step. Through evaluations in both simulation and real robot experiments, we confirmed that our CSD was effective for grinding to different materials and various target shapes in a short time.
มุมมอง: 75
วีดีโอ
Progressive-Resolution Policy Distillation: Leveraging Coarse-Sim for Time-Efficient RL on Fine-Sim
มุมมอง 32วันที่ผ่านมา
Yuki Kadokawa, Hirotaka Tahara, Takamitsu Matsubara Progressive-Resolution Policy Distillation: Leveraging Coarse-Resolution Simulation for Time-Efficient Fine-Resolution Policy Learning
Self-Supervised Learning of Grasping Arbitrary Objects On-The-Move
มุมมอง 19521 วันที่ผ่านมา
Kiyokawa, Takuya, Nagata, Eiki, Tsurumine, Yoshihisa, Kwon, Yuhwan, Matsubara, Takamitsu: Self-Supervised Learning of Grasping Arbitrary Objects On-The-Move, SII2025.
Cooperative Grasping and Transportation using Multi-agent RL with Ternary Force Representation
มุมมอง 184หลายเดือนก่อน
Ing-Sheng Bernard-Tiong, Yoshihisa Tsurumine, Ryosuke Sota, Kazuki Shibata, and Takamitsu Matsubara, Cooperative Grasping and Transportation using Multi-agent Reinforcement Learning with Ternary Force Representation, accepted for 2025 IEEE/SICE International Symposium on System Integrations (SII 2025)
Robust Iterative Value Conversion: Deep Reinforcement Learning for Neurochip-driven Edge Robots
มุมมอง 4674 หลายเดือนก่อน
Yuki Kadokawa, Tomohito Kodera, Yoshihisa Tsurumine, Shinya Nishimura, Takamitsu Matsubara Robust Iterative Value Conversion: Deep Reinforcement Learning for Neurochip-driven Edge Robots, accepted for Robotics and Autonomous Systems doi.org/10.1016/j.robot.2024.104782
Teleoperated Robotic NASURA project (CICP2020)
มุมมอง 788 หลายเดือนก่อน
Teleoperated Robotic NASURA project (CICP2020)
Task-priority Intermediated Hierarchical Distributed Policies
มุมมอง 1948 หลายเดือนก่อน
Task-priority Intermediated Hierarchical Distributed Policies: Reinforcement Learning of Adaptive Multi-robot Cooperative Transport Yusei Naito, Tomohiko Jimbo, Tadashi Odashima, and Takamitsu Matsubara arxiv.org/abs/2404.02362
UAI2014: Latent Kullback Leibler Control for Continuous-State Systems
มุมมอง 218 หลายเดือนก่อน
Latent Kullback Leibler Control for Continuous-State Systems using Probabilistic Graphical Models Takamitsu Matsubara, NAIST; Vicenç Gómez, Radboud University, Nijmegen; Hilbert Kappen, Radboud University The Conference on Uncertainty in Artificial Intelligence (UAI) 2014
2017 NAIST OC demo (Air hockey Baxter)
มุมมอง 418 หลายเดือนก่อน
2017 NAIST OC demo (Air hockey Baxter)
2017 NAIST OC demo (Simulated air hockey Baxter)
มุมมอง 428 หลายเดือนก่อน
2017 NAIST OC demo (Simulated air hockey Baxter)
Model-based reinforcement learning approach for deformable linear object manipulation, IEEE CASE2017
มุมมอง 319 หลายเดือนก่อน
Model-based reinforcement learning approach for deformable linear object manipulation, Haifeng Han; Gavin Paul; Takamitsu Matsubara, CASE 2017- 13th International Conference on Automation Science and Engineering
Leveraging Demonstrator-Perceived Precision for Safe Interactive IL of Clearance-Limited Tasks
มุมมอง 22110 หลายเดือนก่อน
Hanbit Oh and Takamitsu Matsubara, Leveraging Demonstrator-Perceived Precision for Safe Interactive Imitation Learning of Clearance-Limited Tasks, IEEE Robotics and Automation Letters, 2024 Project Page: sites.google.com/view/dpiil IEEE Xplore: ieeexplore.ieee.org/document/10438830 Arxiv: arxiv.org/abs/2402.13466 ABSTRACT Interactive imitation learning is an efficient, model-free method through...
Incipient Slip Detection by Vibration Injection into Soft Sensor
มุมมอง 15110 หลายเดือนก่อน
Naoto Komeno and Takamitsu Matsubara, Incipient Slip Detection by Vibration Injection into Soft Sensor, IEEE Robotics and Automation Letters, 2024 ieeexplore.ieee.org/document/10436157 arxiv.org/abs/2402.11879 In robotic manipulation, preventing objects from slipping and establishing a secure grip on them is critical. Successful manipulation requires tactile sensors that detect the microscopic ...
Deep Segmented DMP Networks for Learning Discontinuous Motions
มุมมอง 184ปีที่แล้ว
Publication: IEEE Conference on Automation Science and Engineering (CASE) 2023 Abstract: Discontinuous motion which is a motion composed of multiple continuous motions with sudden change in direction or velocity in between, can be seen in state-aware robotic tasks. Such robotic tasks are often coordinated with sensor information such as image. In recent years, Dynamic Movement Primitives (DMP) ...
Learning to Shape by Grinding: Cutting-surface-aware Model-based Reinforcement Learning
มุมมอง 237ปีที่แล้ว
Accepted for IEEE Robotics and Automation Letters (RA-L) 2023 This video shows the experimental results in simulations and a real environment. arXiv: arxiv.org/abs/2308.02150 project page: t-hachimine.github.io/csambrl/ Author list: Takumi Hachimine*, Jun Morimoto, and Takamitsu Matsubara Abstract: Object shaping by grinding is a crucial industrial process in which a rotating grinding belt remo...
Jamming Gripper-Inspired Soft Jig for Perceptive Parts Fixing
มุมมอง 121ปีที่แล้ว
Jamming Gripper-Inspired Soft Jig for Perceptive Parts Fixing
Cyclic Policy Distillation: Sample-Efficient Sim-to-Real RL with Domain Randomization
มุมมอง 300ปีที่แล้ว
Cyclic Policy Distillation: Sample-Efficient Sim-to-Real RL with Domain Randomization
Disturbance Injection under Partial Automation: Robust Imitation Learning for Long-horizon Tasks
มุมมอง 229ปีที่แล้ว
Disturbance Injection under Partial Automation: Robust Imitation Learning for Long-horizon Tasks
Deep reinforcement learning of event-triggered communication and consensus-based control for distri~
มุมมอง 7202 ปีที่แล้ว
Deep reinforcement learning of event-triggered communication and consensus-based control for distri~
ICRA2010: Optimal feedback control for anthropomorphic manipulators
มุมมอง 1832 ปีที่แล้ว
ICRA2010: Optimal feedback control for anthropomorphic manipulators
Bayesian Disturbance Injection:Robust Imitation Learning of Flexible Policies for Robot Manipulation
มุมมอง 1902 ปีที่แล้ว
Bayesian Disturbance Injection:Robust Imitation Learning of Flexible Policies for Robot Manipulation
Randomized-to-Canonical Model Predictive Control for Real-world Visual Robotic Manipulation
มุมมอง 3112 ปีที่แล้ว
Randomized-to-Canonical Model Predictive Control for Real-world Visual Robotic Manipulation
Goal-Aware Generative Adversarial Imitation Learning applied to real robotic cloth-manipulation task
มุมมอง 4252 ปีที่แล้ว
Goal-Aware Generative Adversarial Imitation Learning applied to real robotic cloth-manipulation task
Physically Consistent Preferential Bayesian Optimization for Food Arrangement
มุมมอง 2262 ปีที่แล้ว
Physically Consistent Preferential Bayesian Optimization for Food Arrangement
Randomized-to-Canonical Model Predictive Control for Real-world Visual Robotic Manipulation
มุมมอง 2002 ปีที่แล้ว
Randomized-to-Canonical Model Predictive Control for Real-world Visual Robotic Manipulation
Deep Koopman with Control: Spectral Analysis of Soft Robot Dynamics
มุมมอง 2512 ปีที่แล้ว
Deep Koopman with Control: Spectral Analysis of Soft Robot Dynamics
Gaussian Process Self-Triggered Policy Search in Weakly Observable Environments
มุมมอง 1892 ปีที่แล้ว
Gaussian Process Self-Triggered Policy Search in Weakly Observable Environments
Deep reinforcement learning with smooth policy update: Application to robotic cloth manipulation
มุมมอง 2632 ปีที่แล้ว
Deep reinforcement learning with smooth policy update: Application to robotic cloth manipulation
Disturbance-injected Robust Imitation Learning with Task Achievement
มุมมอง 2952 ปีที่แล้ว
Disturbance-injected Robust Imitation Learning with Task Achievement
Binarized P-Network: Deep Reinforcement Learning of Robot Control from Raw Images on FPGA
มุมมอง 3763 ปีที่แล้ว
Binarized P-Network: Deep Reinforcement Learning of Robot Control from Raw Images on FPGA