- 13
- 1 498
Brian Northan
เข้าร่วมเมื่อ 15 ธ.ค. 2019
Challenging Cellpose part 2
Part 2 of challenging Cellpose Image.sc question. More info on augmentation and training parameters and a closer look at the flows and probability maps.
มุมมอง: 11
วีดีโอ
Challenging Cellpose part1
มุมมอง 20วันที่ผ่านมา
A challenging Cellpose problem from the Image.sc forum. In these images there are larger cells with very long protrusions and we have to tweak Cellpose training and evaluation parameters to try and optimize segmentation.
Bees part 3, Sparse Stardist + Mobile Sam (Yolo+SAM)
มุมมอง 952 หลายเดือนก่อน
This video, though slightly rough around the edges, aims to demonstrate the performance of two deep learning approaches on bee data. The first approach is MobileSam, a combination of YOLO and SAM, and the second is Stardist with sparse labels. Starting from version 0.9, Stardist no longer requires complete rectangular ROIs for labeling; you can leave portions of the label empty. This feature ca...
Semantic Segmentation with PyTorch and Napari
มุมมอง 1022 หลายเดือนก่อน
This video shows how to use Napari (with a customized labeling widget) and PyTorch to train a deep learning UNET semantic segmentation model network to detect roots. A similar workflow could be used for image with vessels, cracks or other filament like structure. We use augmentation to supplement a very small number of labels.
Stardist connect 2D in 3D
มุมมอง 1623 หลายเดือนก่อน
This video shows how to use Stardist 2D to create a training set for Stardist 3D. We first create a simulated 3D image, then add blur, noise and random mis-alignment. Then we apply a stardist2D-connectin3D strategy to generate 3D labels. We train Stardist with these imperfect labels and show that Stardist3d does not overfit the imperfections.
Exploring Stardist scale and shape
มุมมอง 564 หลายเดือนก่อน
A video showing how to create simulated images to test the performance of a custom Stardist model on objects at varying scale and shape (with some objects being very elongated).
Napari/Stardist bee segmentation the sequel.
มุมมอง 1715 หลายเดือนก่อน
In this video I show how to retrain a model after we get new data (in this case a new bee image). I talk about augmentation, test-prediction, validation-prediction, and self-prediction. Throughout the video I use Napari as both a viewer and a labeling tool.
segment everything demo
มุมมอง 3016 หลายเดือนก่อน
Quick demo showing how to use the napari-segment-everything plugin. This is a plugin that can be used to explore the large, overlapping label collection that is returned from the Meta AI SAM segmentation model. The plugin can be installed from the Napari hub.
napari sam labeling
มุมมอง 1497 หลายเดือนก่อน
Short video demonstrating how to label an image in Napari with a combination of SAM and Napari labelling tools.
insect egg labelling
มุมมอง 359 หลายเดือนก่อน
Shows how to quickly correct labels with Napari, then retrain a stardist model, in the case where another method is about 95% accurate but needs a few fixes.
bee labelling for imagesc
มุมมอง 18710 หลายเดือนก่อน
This video was made to help with this imagesc image forum question forum.image.sc/t/how-to-count-bees-pattern-recognition-and-segmentation/90115/8 It shows how to label, train a stardist network for segmentation then relabel the bee image using ipython notebooks and the napari viewer. Code for the example is here github.com/True-North-Intelligent-Algorithms/tnia-python/tree/main/notebooks/image...
Suggestion: use Segment Anything Model to speed up the segmentation process. Add this feature to napari.
Tools we can use: AnyLabeling, or X-AnyLabeling. Both can use SAM, Grounding DINO and other segmentation models.
Thank you for the explanation. Request to zoom in the text, make it bigger to make it more readable.
Here is a link to the original question this video is based on. forum.image.sc/t/how-to-count-bees-pattern-recognition-and-segmentation/90115
😬 'Promo sm'