Machine Learning and AI
Machine Learning and AI
  • 19
  • 127 840

วีดีโอ

Large Scale Machine Learning | ML-005 Lecture 17 | Stanford University | Andrew Ng
มุมมอง 1.9K7 ปีที่แล้ว
Contents: Learning with large datasets, Stochastic Gradient Descent, Mini batch gradient descent, Stochastic gradient descent convergence, online learning, map reduce, Data parallelism Large Scale Machine Learning,
Application Example Photo OCR | ML-005 Lecture 18 | Stanford University | Andrew Ng
มุมมอง 4.6K7 ปีที่แล้ว
Contents: Application Example, Problem description and pipeline, Sliding windows, Getting lots of data and artificial data, Ceiling analysis,
Recommender Systems | ML-005 Lecture 16 | Stanford University | Andrew Ng
มุมมอง 13K7 ปีที่แล้ว
Contents: Problem Formulation, Content based recommendations, Collaborative Filtering, Collaborative Filtering Algorithm, Vectorization - Low Rang matrix factorization, Implementation detail - Mean Normalization, Recommender Systems,
Support Vector Machines | ML-005 Lecture 12 | Stanford University | Andrew Ng
มุมมอง 13K7 ปีที่แล้ว
Contents: Optimization Objective, Large Margin Intuition, Mathematics Behind Large Margin Classification Optional, Kernels, Using an SVM,
Dimensionality Reduction | ML-005 Lecture 14 | Stanford University | Andrew Ng
มุมมอง 9K7 ปีที่แล้ว
Contents: Motivation 1 - Data Compression, Motivation 2 - Visualization, Principal Component Analysis - Problem Formulation, Principal Component Analysis Algorithm, Choosing the number of Principal Components, Reconstruction from Compressed Representation, Advice for Applying PCA.
Anomaly Detection | ML-005 Lecture 15 | Stanford University | Andrew Ng
มุมมอง 6K7 ปีที่แล้ว
Contents: Problem Motivation, Gaussian Distribution, Algorithm, Developing and Evaluating an Anomaly detection system, Anomaly detection vs supervised learning, Choosing what features to use, Multivariate Gaussian Distribution, Anomaly detection using multivariate guassian distribution,
Clustering | ML-005 Lecture 13 | Stanford University | Andrew Ng
มุมมอง 7K7 ปีที่แล้ว
Contents: Unsupervised Learning - Introduction, K-Means Algorithm, Optimization Objective, Random Initialization, Choosing the number of Clusters,
Machine Learning System Design | ML-005 Lecture 11 | Stanford University | Andrew Ng
มุมมอง 3.6K7 ปีที่แล้ว
Contents: Prioritizing what to work on, Error Analysis, Error Metrics for Skewed Classes, Trading Off Precision and Recall, Data for Machine Learning,
Applying Machine Learning | ML-005 Lecture 10 | Stanford University | Andrew Ng
มุมมอง 2.5K7 ปีที่แล้ว
Contents: Deciding what to try next, Evaluating a Hypothesis, Model Selection and Train Validation, Diagnosing Bias vs Variance, Regularization and Bias Variance, Learning Curves, Deciding what to do next revisited, Applying machine learning
Neural Networks Learning | ML-005 Lecture 9 | Stanford University | Andrew Ng
มุมมอง 4.9K7 ปีที่แล้ว
Contents: Cost function, Backpropagation Algorithm, Backpropagation Intuition, Unrolling Parameters, Gradient Checking, Random Initialization, Putting it together, Autonomous Driving,
Neural Networks Representation | ML-005 Lecture 8 | Stanford University | Andrew Ng
มุมมอง 6K7 ปีที่แล้ว
Contents: Non-linear Hypothesis, Neurons and the Brain, Model Representation, Examples and Intuition, Multiclass Classification, Neural Networks Representation
Regularization | ML-005 Lecture 7 | Stanford University | Andrew Ng
มุมมอง 8K7 ปีที่แล้ว
Contents: The problem of overfitting, Cost Function, Regularized Linear Regression, Regularized Logistic Regression, Regularization,
Logistic Regression | ML-005 Lecture 6 | Stanford University | Andrew Ng 01 Classification 8 min
มุมมอง 13K7 ปีที่แล้ว
Contents: Classification, Hypothesis Representation, Decision Boundary, Cost Function, Simplified Cost Function and Gradient Descent, Advanced Optimization, Multiclass Classification,
Octave Tutorial | ML-005 Lecture 5 | Stanford University | Andrew Ng
มุมมอง 2.5K7 ปีที่แล้ว
Contents: Basic Operations, Moving Data Around, Computing on Data, Plotting Data, Control Statements, Vectorization, Working on and submitting programming exercises,
Linear Regression with Multiple Variables | ML-005 Lecture 4 | Stanford University | Andrew Ng
มุมมอง 7K7 ปีที่แล้ว
Linear Regression with Multiple Variables | ML-005 Lecture 4 | Stanford University | Andrew Ng
Linear Algebra Review | ML-005 Lecture 3 | Stanford University | Andrew Ng
มุมมอง 3.2K7 ปีที่แล้ว
Linear Algebra Review | ML-005 Lecture 3 | Stanford University | Andrew Ng
Linear Regression with One Variable | ML-005 Lecture 2 | Stanford University | Andrew Ng
มุมมอง 8K7 ปีที่แล้ว
Linear Regression with One Variable | ML-005 Lecture 2 | Stanford University | Andrew Ng
Introduction to Machine Learning | ML-005 Lecture 1 | Stanford University | Andrew Ng
มุมมอง 14K7 ปีที่แล้ว
Introduction to Machine Learning | ML-005 Lecture 1 | Stanford University | Andrew Ng

ความคิดเห็น

  • @GabrielOduori
    @GabrielOduori หลายเดือนก่อน

    Hi Andrew, great video thanks. It appears to be that Anomaly detection here is treated as a binary problem: Either an anomaly is seen or not seen and if we apply this in network data, it quickly becomes a challenge with possible several false positives. I was wondering suppose that we look at the probability distribution based on the 2d plots we have seen here, and that given a new sample, based on the graph we can visually see that the new data point is anomalous, are there tools we could use to evaluate the performance without necessarily running the data through an ML algorithm?

  • @haiderichannel7891
    @haiderichannel7891 หลายเดือนก่อน

    thanks andrew ng

  • @ZlogsUK
    @ZlogsUK หลายเดือนก่อน

    Thats a lot better than MIT lecture no doubt its for intellectuals i aint no intellectual neither brainy enough 😢

  • @vishaldasari6326
    @vishaldasari6326 2 หลายเดือนก่อน

    insightful

  • @MelissaYoutube-o8e
    @MelissaYoutube-o8e 2 หลายเดือนก่อน

    how to know the number of layers we need to have ?

  • @AJBeiza
    @AJBeiza 3 หลายเดือนก่อน

    this guy is amazing, the explanation is perfectly paced and doesn't assume anything besides very basic linear algebra and calculus skills

  • @yashwanthyerra2820
    @yashwanthyerra2820 3 หลายเดือนก่อน

    59:04

  • @fedted0
    @fedted0 3 หลายเดือนก่อน

    by far one of the most underrated TH-cam Channel, love your contents, keep going

  • @TheInfraCore
    @TheInfraCore 5 หลายเดือนก่อน

    Here NumPy implementation and in-depth explanation of key concepts for 1-D case m.th-cam.com/video/zFQUV4rMd2Q/w-d-xo.html

  • @Phi_AI
    @Phi_AI 6 หลายเดือนก่อน

    This is implementation of Linear regression from scratch in NumPy only. In-depth explanation of key concepts like Cost Function and Gradient Descent th-cam.com/video/wxCQxZKo4hU/w-d-xo.html

  • @dailyjobspreparation
    @dailyjobspreparation 7 หลายเดือนก่อน

    Thanks Andrew

  • @dianaanahiledesmaroque9364
    @dianaanahiledesmaroque9364 9 หลายเดือนก่อน

    Te rifaste guardando estos videos

  • @sun5god6nika
    @sun5god6nika 11 หลายเดือนก่อน

    hi

    • @thenerdguy9985
      @thenerdguy9985 หลายเดือนก่อน

      hello

    • @barbell-dev
      @barbell-dev 22 วันที่ผ่านมา

      @@thenerdguy9985 hey

    • @thenerdguy9985
      @thenerdguy9985 21 วันที่ผ่านมา

      @@barbell-dev How's everything going?

  • @Mahmoud-ys1kt
    @Mahmoud-ys1kt 11 หลายเดือนก่อน

    Great, thanks

  • @extrullorgd4444
    @extrullorgd4444 11 หลายเดือนก่อน

    Brillian explanation, clear and easy to understand.

  • @javieraldrete3991
    @javieraldrete3991 ปีที่แล้ว

    thanks to you Andrew 😉

  • @jeffreydanowitz3083
    @jeffreydanowitz3083 ปีที่แล้ว

    As usual - Andrew NG brilliantly and clearly explains everything.

  • @balasubramanians4114
    @balasubramanians4114 ปีที่แล้ว

    Fantastic explanation by professor Andrew NG ❤

  • @jinli1835
    @jinli1835 ปีที่แล้ว

    It is a bit confusing when it comes to the design matrix

  • @rogerhoefel8515
    @rogerhoefel8515 4 ปีที่แล้ว

    I have watched and studied the full course: an excellent introduction for understanding more advanced topics on this fascinating topic. Roger Hoefel - Wireless Researcher Thank you very much Andrew Ng!!

  • @2212abcdef
    @2212abcdef 4 ปีที่แล้ว

    Thanks for the video. Very helpful. Could you also upload videos for the deep learning specification which is available on Coursera?

  • @awais_arshad
    @awais_arshad 5 ปีที่แล้ว

    Aah. Thank a lot Andrew.