Nick Stugard
Nick Stugard
  • 181
  • 63 103

วีดีโอ

How to choose the Right Machine Learning Algorithm
มุมมอง 2322 หลายเดือนก่อน
In the video we will discuss several different machine learning algorithms and models as well as how to choose the best one for your project
Correlation between Two Variables Explained
มุมมอง 1182 หลายเดือนก่อน
In this video we look at how we determine if two variables are related to each other. Link to SpuriousCorrelations: www.tylervigen.com/spurious-correlations
Creating a Linear Regression Model in Python
มุมมอง 6192 หลายเดือนก่อน
In this video we will be using the Boston Housing Data Set to create a linear regression model by first exploring the data and determining the best two predictor variables in the data set. You can find the dataset here: github.com/NStugard/Intro-to-Machine-Learning/blob/main/BostonHousing.csv And the description of variables here: github.com/NStugard/Intro-to-Machine-Learning/blob/main/BostonHo...
Making Language Mathematical: Why ChatGPT Works
มุมมอง 1173 หลายเดือนก่อน
In this video we discuss how we can define words as mathematical structures and what that looks like. It's important to remember that applications like ChatGPT are just neural networks trained to predict the next most likely word. For more details, please review my video on Neural Networks: th-cam.com/video/8HHHIPwamIU/w-d-xo.htmlsi=hfJtpH_n3C7MhB53 And on Gradient Descent: th-cam.com/video/Ipu...
What is Statistics? - Sampling and Bias
มุมมอง 1116 หลายเดือนก่อน
In this video we discuss how in statistics we want to describe a population, but we only have a sample. We talk about how this can go wrong and ways to prevent it going wrong, although we can never be perfectly confident.
What is Statistics? - Variables and Data Collection
มุมมอง 2087 หลายเดือนก่อน
What is Statistics? - Variables and Data Collection
Welcome to Online Stats at CT State
มุมมอง 2298 หลายเดือนก่อน
Welcome to Online Stats at CT State
DS Lab 9 Jobs In Data with Sampling Distributions
มุมมอง 6810 หลายเดือนก่อน
DS Lab 9 Jobs In Data with Sampling Distributions
9.2 DS - Simulations and Randomness in R
มุมมอง 5411 หลายเดือนก่อน
9.2 DS - Simulations and Randomness in R
9.1 DS - Sampling
มุมมอง 3611 หลายเดือนก่อน
9.1 DS - Sampling
Limit Examples
มุมมอง 12611 หลายเดือนก่อน
This video reviews a five different limit examples
Limit Laws and Theorems
มุมมอง 19811 หลายเดือนก่อน
In this video, we learn the basic limit laws and rules as well as investigate the Squeeze Theorem
Infinite Limits
มุมมอง 62ปีที่แล้ว
What happens at vertical asymptotes?
Investigating Limits with Technology
มุมมอง 78ปีที่แล้ว
How can we use a TI-83/84 calculator to evaluate functions to help us determine limits
Divergence and Curl
มุมมอง 106ปีที่แล้ว
Divergence and Curl
Statistics - Chapter 10: Hypothesis Testing Examples
มุมมอง 359ปีที่แล้ว
Statistics - Chapter 10: Hypothesis Testing Examples
Statistics - Chapter 10: Hypothesis Testing Concepts
มุมมอง 439ปีที่แล้ว
Statistics - Chapter 10: Hypothesis Testing Concepts
Describing Regions in 2D
มุมมอง 41ปีที่แล้ว
Describing Regions in 2D
More Matrix Multiplication - Identities and Inverses
มุมมอง 46ปีที่แล้ว
More Matrix Multiplication - Identities and Inverses
Statistics: Chapter 8 - Sampling Distributions
มุมมอง 1.4Kปีที่แล้ว
Statistics: Chapter 8 - Sampling Distributions
DS - Merging Dataframes in R
มุมมอง 48ปีที่แล้ว
DS - Merging Dataframes in R
Integrating Rational Expressions
มุมมอง 61ปีที่แล้ว
Integrating Rational Expressions
ML 14 - Convolutional Neural Networks Explained
มุมมอง 1452 ปีที่แล้ว
ML 14 - Convolutional Neural Networks Explained
Creating a Convolutional Neural Network with Tensorflow
มุมมอง 4062 ปีที่แล้ว
Creating a Convolutional Neural Network with Tensorflow
SVMs in Python
มุมมอง 7662 ปีที่แล้ว
SVMs in Python
ML 12.1 - Support Vector Machines
มุมมอง 1082 ปีที่แล้ว
ML 12.1 - Support Vector Machines
ML 11.2 - Image Convolution in Python
มุมมอง 7382 ปีที่แล้ว
ML 11.2 - Image Convolution in Python
ML 11.1 - Kernels in Image Convolution
มุมมอง 1012 ปีที่แล้ว
ML 11.1 - Kernels in Image Convolution
Polynomial Regression in Python
มุมมอง 5352 ปีที่แล้ว
Polynomial Regression in Python

ความคิดเห็น

  • @瓦大為
    @瓦大為 5 วันที่ผ่านมา

    Thanks for the video for someone like me struggle in beginning with NLP !!!

  • @shreyaskatiyar614
    @shreyaskatiyar614 หลายเดือนก่อน

    Sir why u have stopped to make videos ? U were too good if u can please continue sir.

  • @n3llyn3lson
    @n3llyn3lson หลายเดือนก่อน

    00:00 📘 Introduction: Professor Stugard explains the goal is to understand convolutional neural networks, focusing on image recognition. 00:13 🖼 Image Classification: The process involves inputting an image, using the CNN's hidden layers, and outputting a class guess. 00:56 🔄 Convolution: Uses filters to create feature maps and activates them with the ReLU function for image classification tasks. 01:37 🌊 Pooling: Generalizes feature maps to detect features in multiple areas, creating pooled feature maps. 02:19 🔁 Iterative Process: Multiple convolution and pooling cycles lead to a fully connected neural network for outputting image class guesses. 03:02 👁 Biological Inspiration: CNNs mimic human vision by finding features in images rather than analyzing every pixel. 04:11 🧠 Feature Extraction: CNN layers break down images into areas for convolution and pooling, simplifying feature representation. 05:09 📊 Data Efficiency: Convolution reduces data size, making it easier and faster to process, crucial for high-resolution images. 06:42 ➗ Convolution Mechanics: A kernel applied to an image matrix reduces its dimensions, efficiently preserving feature information. 08:21 🔍 Feature Detectors: Different kernels and feature detectors extract various features like edges or enhancements. 10:13 ⚙ ReLU Activation: Facilitates non-linear classification by mapping negative values to zero, enhancing training. 12:04 🌀 Max Pooling: Reduces data size by selecting maximum values in non-overlapping regions, aiding in feature generalization. 13:27 ✔ Importance of Generalization: Pooling allows CNNs to recognize features despite transformations like rotation or scaling. 14:22 📉 Size Reduction: Max pooling can significantly decrease data size, even from 100 to 9 values, without losing general feature recognition. 16:51 ➖ Flattening: Pooled feature maps are flattened into vectors before being input into standard neural networks for learning. 18:52 🚗 Applications: CNNs are used in diverse applications like self-driving cars, facial recognition, and botanical identification. 19:47 🔄 Training with Epochs: Iterative process involving multiple epochs enhances model accuracy through repeated weight adjustments. 21:25 🏆 Accuracy: High accuracy is vital for critical tasks; CNNs require extensive training to achieve such precision

  • @IsmailAydemir0
    @IsmailAydemir0 2 หลายเดือนก่อน

    Hello! thank you for the video, it helped me a lot to understand how Naive Bayes is works!

  • @otis123-l3k
    @otis123-l3k 2 หลายเดือนก่อน

    thank you Mr Stugard, the video is really helpful for my assignment on ethical issues

  • @scrophie
    @scrophie 2 หลายเดือนก่อน

    Thanks. You really helped me)

  • @Abubakar91718
    @Abubakar91718 2 หลายเดือนก่อน

    yours videos are awesome. please do SEO of your channel and video. That would help to attract audience

    • @nickstugard9062
      @nickstugard9062 2 หลายเดือนก่อน

      Thanks! I don't really know how to do SEO...

  • @sammyay-man2754
    @sammyay-man2754 2 หลายเดือนก่อน

    Looking forward for logistic regression video

  • @gorgesoros4137
    @gorgesoros4137 2 หลายเดือนก่อน

    I still couldn't understand why we can use volume enclosed by the surface to represent surface integral for scalar field

    • @nickstugard9062
      @nickstugard9062 2 หลายเดือนก่อน

      Which part are you confused about? Can you tell me the time-stamp?

  • @jamesiswanto
    @jamesiswanto 2 หลายเดือนก่อน

    Great stuff, Professor!

  • @magorasmask101
    @magorasmask101 3 หลายเดือนก่อน

    Great video! While playing around with the messages I found the model decided "we have been trying to reach you about your cars extended warranty" is ham haha. Other messages were no issue though.

  • @monirhasananik8720
    @monirhasananik8720 3 หลายเดือนก่อน

    where is the code file?

  • @lukegriggs7294
    @lukegriggs7294 3 หลายเดือนก่อน

    This was such a well explained video, thank you for this you are an amazing teacher!

    • @nickstugard9062
      @nickstugard9062 3 หลายเดือนก่อน

      Thanks for the kind words

  • @suruti94
    @suruti94 3 หลายเดือนก่อน

    Basics well explajned

  • @practicemail3227
    @practicemail3227 3 หลายเดือนก่อน

    Great technical delivery from your side, you easily made difficult topics easy and also connected dots wonderfully. Thank you a lot

  • @wahajrashid270
    @wahajrashid270 4 หลายเดือนก่อน

    I really hope someone will HELP me in my case so I built a similar spam detector for my college project but my professor is saying that it is a data science project that is why I want to give it a touch of cybersecurity so what should I add in this project to make it more specific to cyber security ?

  • @Rafs_kun
    @Rafs_kun 5 หลายเดือนก่อน

    Awesome Video Learned a lot

  • @rahilnecefov2018
    @rahilnecefov2018 7 หลายเดือนก่อน

    that was just awesome, love you from Azerbaijan Baku <3

    • @nickstugard9062
      @nickstugard9062 7 หลายเดือนก่อน

      Thank you for the kind words

  • @kanuemma9387
    @kanuemma9387 7 หลายเดือนก่อน

    Legend

  • @FORCP-bq5fo
    @FORCP-bq5fo 8 หลายเดือนก่อน

    Such a simple and greatly explained video. Thanks man

  • @Diniyaaaaaa
    @Diniyaaaaaa 9 หลายเดือนก่อน

    Can u please provide the code 🙂🙂🙂🙂

  • @dm-hn2wt
    @dm-hn2wt 10 หลายเดือนก่อน

    Hoe to deploy this plsss

  • @karthickm7906
    @karthickm7906 10 หลายเดือนก่อน

    Can you provide github project link containing full source code

  • @wolfemaxwell
    @wolfemaxwell 10 หลายเดือนก่อน

    Very interesting! Good recommendations.

  • @Kalyan1143
    @Kalyan1143 10 หลายเดือนก่อน

    Will you provide github project link For full souce code

  • @mrunalwaghmare
    @mrunalwaghmare 10 หลายเดือนก่อน

    hey there nice explanation Thanks a lot ! nicely explained and easy to understand wish we had professors like you in our college <3

  • @james17g
    @james17g 10 หลายเดือนก่อน

    very awesome video and demonstration! Insane to me how this works. one of those things as CS student that gets me excited!

  • @TheMatyw
    @TheMatyw 11 หลายเดือนก่อน

    jesus christ, talking about niche videos, tysm for this video!!!

    • @nickstugard9062
      @nickstugard9062 11 หลายเดือนก่อน

      Ha! So glad it helped!

  • @juancarlossanchezveana1812
    @juancarlossanchezveana1812 11 หลายเดือนก่อน

    Excellent

  • @t.danielyan
    @t.danielyan ปีที่แล้ว

    This is naive video, i understood whole concept in just 30 minutes. Thank you.

  • @purvisingh235
    @purvisingh235 ปีที่แล้ว

    is this realated with cloud coumputing or general mails??/

    • @nickstugard9062
      @nickstugard9062 ปีที่แล้ว

      This video details the algorithm we can use for classifying any text/string and is very general. But it is only a binomial classification with the only options being 'spam' or 'not spam.' This can be implemented inside of another program that inputs text/strings into this model we've built. Which means it could be implemented in a cloud computer setting or just for general emails.

  • @MAZUMDERMOHITHASNAIN
    @MAZUMDERMOHITHASNAIN ปีที่แล้ว

    Thank you man!

  • @anshugupta2340
    @anshugupta2340 ปีที่แล้ว

    Awesome !!

  • @bart5557
    @bart5557 ปีที่แล้ว

    It's not a bad project like this. To see the data loading and preparations step lined out is very nice. But I came here to learn about Naive Bayes and how those calculations work, and all I got was MultinomialNB().

  • @andreeafilip9221
    @andreeafilip9221 ปีที่แล้ว

    Hi, thanks a lot for the video. It is very informative and very well explained. I have a curiosity, where did you get the email database from? Thank you in advance.

  • @quang5033
    @quang5033 ปีที่แล้ว

    thank you, i can learn a lot from you

  • @Ewakaa
    @Ewakaa ปีที่แล้ว

    So I have gone through your entire videos And trust me as an engineering student you have awesome videos. But if you can focus your teaching with project based then you will have a lot of views Example the videos your have on linear regression, support vector machine and the rest But this is amazing Thanks so much

    • @nickstugard9062
      @nickstugard9062 ปีที่แล้ว

      Thank you so much for the kind words and feedback. I'll have to make a new project video soon. Do you have any requests about a type of project I should do a video about in the future?

  • @uploadideaswithitamar
    @uploadideaswithitamar ปีที่แล้ว

    Hi there. Good video. Please, what screen record did you use ?

  • @stupenrio2498
    @stupenrio2498 ปีที่แล้ว

    Thank you for making this video 😊

  • @kingrodeski343
    @kingrodeski343 ปีที่แล้ว

    Great video mate, you stand out

  • @shahriaralom4547
    @shahriaralom4547 ปีที่แล้ว

    please can you provide the link of written script

  • @shahriaralom4547
    @shahriaralom4547 ปีที่แล้ว

    Thank you so much sir ☺️

  • @youssraben7789
    @youssraben7789 ปีที่แล้ว

    why when i upload the dataset make this eroor Error tokenizing data. C error: Expected 2 fields in line 13, saw 4

  • @isaacp8073
    @isaacp8073 2 ปีที่แล้ว

    Please can you link the dataset you used. Really good video btw. Very well explained.

    • @nickstugard9062
      @nickstugard9062 2 ปีที่แล้ว

      Sorry for the delay. You can find the dataset I used in the description or here: github.com/NStugard/Intro-to-Machine-Learning/blob/main/spam.csv You can save it to your local machine by right-clicking the button that says "Raw," then "Save link as," then saving it as "spam.csv"

    • @nickstugard9062
      @nickstugard9062 2 ปีที่แล้ว

      And thank you for the kind words

    • @isaacp8073
      @isaacp8073 2 ปีที่แล้ว

      No problem at all. Thank you very much

  • @livingstonjeeva2219
    @livingstonjeeva2219 2 ปีที่แล้ว

    Nicely explained... thanks

  • @heprilesmono8908
    @heprilesmono8908 2 ปีที่แล้ว

    thanks, very good. What if there is new data outside the dataset, can it be detected? How to?

  • @thandobrilliant8639
    @thandobrilliant8639 2 ปีที่แล้ว

    This was exactly what i needed

  • @jimmypk1353
    @jimmypk1353 2 ปีที่แล้ว

    Highly underrated video. This channel is an undiscovered GEM!

  • @cedricvillani8502
    @cedricvillani8502 2 ปีที่แล้ว

    🤔 What

  • @armankisku4661
    @armankisku4661 2 ปีที่แล้ว

    waiting for more...😄