- 574
- 85 022
Reach The Stars
United States
เข้าร่วมเมื่อ 14 ส.ค. 2021
Q493 | Math Olympiad | Algebra | 2008 AIME I Problem 4 | Completing the Square | Parity
Q493 | Math Olympiad | Algebra | 2008 AIME I Problem 4 | Completing the Square | Parity
มุมมอง: 1
วีดีโอ
Q492 | Math Olympiad | Algebra | 2009 AIME I Problem 7 | Exponent | Logarithm
2 ชั่วโมงที่ผ่านมา
Q492 | Math Olympiad | Algebra | 2009 AIME I Problem 7 | Exponent | Logarithm
Q491 | Math Olympiad | Algebra | 2005 AIME I Problem 6 | Square Root
มุมมอง 12 ชั่วโมงที่ผ่านมา
Q491 | Math Olympiad | Algebra | 2005 AIME I Problem 6 | Square Root
Q490 | Math Olympiad | Algebra | 2010 AIME I Problem 6 | Completing the Square | Trivial Inequality
มุมมอง 820 ชั่วโมงที่ผ่านมา
Q490 | Math Olympiad | Algebra | 2010 AIME I Problem 6 | Completing the Square | Trivial Inequality
Q489 | Math Olympiad | Trigonometry | 2011 AIME I Problem 9 | Logarithm | Sine | Cosine
มุมมอง 320 ชั่วโมงที่ผ่านมา
Q489 | Math Olympiad | Trigonometry | 2011 AIME I Problem 9 | Logarithm | Sine | Cosine
Q488 | Math Olympiad | Algebra | 2017 AIME II Problem 6 | Square Root | Factorization
มุมมอง 520 ชั่วโมงที่ผ่านมา
Q488 | Math Olympiad | Algebra | 2017 AIME II Problem 6 | Square Root | Factorization
Q487 | Math Olympiad | Algebra | 2015 AIME II Problem 8 | Inequality
มุมมอง 72 ชั่วโมงที่ผ่านมา
Q487 | Math Olympiad | Algebra | 2015 AIME II Problem 8 | Inequality
Q486 | Math Olympiad | Algebra | 2015 AIME I Problem 3 | Difference of Cubes
มุมมอง 162 ชั่วโมงที่ผ่านมา
Q486 | Math Olympiad | Algebra | 2015 AIME I Problem 3 | Difference of Cubes
Q485 | Math Olympiad | Algebra | 2016 AIME I Problem 1 | Infinite Geometric Series Sum
มุมมอง 112 ชั่วโมงที่ผ่านมา
Q485 | Math Olympiad | Algebra | 2016 AIME I Problem 1 | Infinite Geometric Series Sum
Q484 | Math Olympiad | Geometry | Law of Sine | Cosine
มุมมอง 5714 วันที่ผ่านมา
Q484 | Math Olympiad | Geometry | Law of Sine | Cosine
Q483 | Math Olympiad | Trigonometry | Law of Cosine | Area of Triangle
มุมมอง 3814 วันที่ผ่านมา
Q483 | Math Olympiad | Trigonometry | Law of Cosine | Area of Triangle
Q482 | Math Olympiad | Trigonometry | Law of Sine | Law of Cosine
มุมมอง 3614 วันที่ผ่านมา
Q482 | Math Olympiad | Trigonometry | Law of Sine | Law of Cosine
Q481 | Math Olympiad | Geometry | Isosceles Right Triangle | Angle Bisector Theorem
มุมมอง 14114 วันที่ผ่านมา
Q481 | Math Olympiad | Geometry | Isosceles Right Triangle | Angle Bisector Theorem
Q480 | Math Olympiad | Geometry | Isosceles Right Triangle | Area of Square
มุมมอง 13714 วันที่ผ่านมา
Q480 | Math Olympiad | Geometry | Isosceles Right Triangle | Area of Square
Q479 | Math Olympiad | Trigonometry | Law of Sine | Law of Cosine
มุมมอง 4014 วันที่ผ่านมา
Q479 | Math Olympiad | Trigonometry | Law of Sine | Law of Cosine
Q478 | Math Olympiad | Algebra | 2023 AMC 12B Problem 9 | Absolute Value Graph
มุมมอง 5921 วันที่ผ่านมา
Q478 | Math Olympiad | Algebra | 2023 AMC 12B Problem 9 | Absolute Value Graph
Q477 | Math Olympiad | Algebra | 2022 AMC 12A Problem 8 | Infinite Geometric Series Sum
มุมมอง 6321 วันที่ผ่านมา
Q477 | Math Olympiad | Algebra | 2022 AMC 12A Problem 8 | Infinite Geometric Series Sum
Q476 | Math Olympiad | Algebra | 2022 AMC 12B Problem 16 | Logarithm
มุมมอง 3521 วันที่ผ่านมา
Q476 | Math Olympiad | Algebra | 2022 AMC 12B Problem 16 | Logarithm
Q475 | Math Olympiad | Algebra | 2024 AMC 12B Problem 11 | Manipulating Equations | Minimum
มุมมอง 6421 วันที่ผ่านมา
Q475 | Math Olympiad | Algebra | 2024 AMC 12B Problem 11 | Manipulating Equations | Minimum
Q474 | Math Olympiad | Geometry | 2024 AMC 10B Problem 11 | Triple Perpendicular Similarity Model
มุมมอง 8521 วันที่ผ่านมา
Q474 | Math Olympiad | Geometry | 2024 AMC 10B Problem 11 | Triple Perpendicular Similarity Model
Q473 | Math Olympiad | Algebra | 2024 AMC 10B Problem 18 | Euler Totient Theorem
มุมมอง 2621 วันที่ผ่านมา
Q473 | Math Olympiad | Algebra | 2024 AMC 10B Problem 18 | Euler Totient Theorem
Q472 | Math Olympiad | Algebra | 2024 AMC 10B Problem 23 | Fibonacci Sequence | Recursion
มุมมอง 5021 วันที่ผ่านมา
Q472 | Math Olympiad | Algebra | 2024 AMC 10B Problem 23 | Fibonacci Sequence | Recursion
Q471 | Math Olympiad | Algebra | 2024 AMC 10B Problem 7 | Remainder | Congruence Modulo
มุมมอง 5621 วันที่ผ่านมา
Q471 | Math Olympiad | Algebra | 2024 AMC 10B Problem 7 | Remainder | Congruence Modulo
Q470 | Math Olympiad | Algebra | 2024 AMC 10A Problem 23 | System of Equations
มุมมอง 301หลายเดือนก่อน
Q470 | Math Olympiad | Algebra | 2024 AMC 10A Problem 23 | System of Equations
Q469 | Math Olympiad | Algebra | 2024 AMC 12A Problem 15 | Vieta Formula | Complex Factorization
มุมมอง 120หลายเดือนก่อน
Q469 | Math Olympiad | Algebra | 2024 AMC 12A Problem 15 | Vieta Formula | Complex Factorization
Q468 | Math Olympiad | Algebra | 2024 AMC 12A Problem 8 | Logarithms
มุมมอง 46หลายเดือนก่อน
Q468 | Math Olympiad | Algebra | 2024 AMC 12A Problem 8 | Logarithms
Q467 | Trigonometry | Geometry | Sine | Cosine | Tangent | Right Triangle
มุมมอง 68หลายเดือนก่อน
Q467 | Trigonometry | Geometry | Sine | Cosine | Tangent | Right Triangle
Q466 | Trigonometry | Sine | Cosine | Quadratic Equation
มุมมอง 60หลายเดือนก่อน
Q466 | Trigonometry | Sine | Cosine | Quadratic Equation
Q465 | Trigonometry | Tangent | Manipulating Fractions
มุมมอง 44หลายเดือนก่อน
Q465 | Trigonometry | Tangent | Manipulating Fractions
Q464 | Math Olympiad | Geometry | Circumcircle Equation | Line Equations
มุมมอง 992 หลายเดือนก่อน
Q464 | Math Olympiad | Geometry | Circumcircle Equation | Line Equations
Amazing
3/4 h + h = 6..h = 24/7..area = .5*6*24/7 = 3*24/7= 72/7
Since the isosceles right triangle is in the middle, no matter the how you rotate that triangle inside, it will always be a quarter of the area of the square area of triangle=(hypotenuse^2/4) less (the area of square divided by 4) Atriangle=(32^2)/4 = 256 units^2 Aquartersquare=(21^2)/4 = 110.25 units^2 Ashaded=256 - 110.25 = 145.75
Nice explanation👍👍👍
0:53 whats the reason behind this
Can this be solved without using imaginary numbers? We know the sum of roots and product of roots. This could be substituted in the expansion of the expression provided.
wrong
a can also be equal to 300° and 420°, 660°, 780° and so on (also their negatives)
1/3
there is a symmetry and the result does not depend on "h=" in line 20: 10 print "reach the stars-math olympiad-geometry":dim x(1,2),y(1,2) 20 l1=2:l2=4:h=1.5:print "h="h:lh=sqr(l1^2-h^2):l3=sqr(l2^2-h^2)-lh 30 print "Das ergebnis BD*CD="; (2*lh+l3)*l3 40 x(0,0)=0:y(0,0)=0:x(0,1)=2*lh:y(0,1)=0:x(0,2)=lh:y(0,2)=h 50 x(1,0)=2*lh:y(1,0)=0:x(1,1)=2*lh+l3:y(1,1)=0:x(1,2)=lh:y(1,2)=h 60 masy=850/h:masx=1200/(2*lh+l3):if masx<masy then mass=masx else mass=masy 70 goto 100 80 xbu=x*mass:ybu=y*mass:return 90 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 100 for a=0 to 1:x=x(a,0):y=y(a,0):gosub 80:xba=xbu:yba=ybu:for b=1 to 3:ib=b 110 if ib=3 then ib=0 120 x=x(a,ib):y=y(a,ib):gosub 80:xbn=xbu:ybn=ybu:gosub 90:next b:next a reach the stars-math olympiad-geometry h= 1.5 Das ergebnis BD*CD=12 > run in bbc basic sdl and hit ctrl tab to copy from the results window.
I don't like it. I think you should detele your channel
ich habe es mal vereinfacht und so gemacht wie in der lösung, weil ich sonst nie fertig geworden wäre: 10 print "reach the stars-q156|math olympiad|geometry|constructing squares" 20 dim x(4,2),y(4,2):wd=5:l1=21:l2=32:x(0,0)=l2/2:y(0,0)=l2/2:x(0,1)=l2 30 y(0,1)=0:x(0,2)=l2:y(0,2)=l2:x(1,0)=l2/2:y(1,0)=l2/2:x(1,1)=x(1,0)+l1/2 40 y(1,1)=y(1,0)-l1/2:x(1,2)=x(1,1):y(1,2)=y(1,1)+l1:nu=20:rem zahl der unterteilungen *** 50 wdu=90:xc=l2/2:yc=l2/2:for a=1 to 3:for b=0 to 2:xu=x(a,b):yu=y(a,b):gosub 60:goto 80 60 xvx=(xu-xc)*cos(rad(wdu)):xvy=(yu-yc)*sin(rad(wdu)):xv=xvx-xvy+xc 70 yvx=(xu-xc)*sin(rad(wdu)):yvy=(yu-yc)*cos(rad(wdu)):yv=yvx+yvy+yc:return 80 x(a+1,b)=xv:y(a+1,b)=yv:next b:next a:wdu=wd:for a=0 to 2:xu=x(0,a):yu=y(0,a):gosub 60 90 x(0,a)=xv:y(0,a)=yv:next a:rem den masstab berechnen *** 100 xmin=l2/2:ymin=l2/2:xmax=xmin:ymax=ymin:for a=0 to 3:for b=0 to 2 110 if x(a,b)<xmin then xmin=x(a,b) 120 if x(a,b)>xmax then xmax=x(a,b) 130 if y(a,b)<ymin then ymin=y(a,b) 140 if y(a,b)>ymax then ymax=y(a,b) 150 next b:next a:print xmin,"%",xmax:masx=1200/(xmax-xmin):masy=850/(ymax-ymin) 160 if masx<masy then mass=masx else mass=masy 170 goto 190 180 xbu=(x-xmin)*mass:ybu=(y-ymin)*mass:return 190 for a=0 to 4:x=x(a,0):y=y(a,0):gosub 180:xb1=xbu:yb1=ybu:x=x(a,1):y=y(a,1) 200 gosub 180:xb2=xbu:yb2=ybu:x=x(a,2):y=y(a,2):gosub 180:xb3=xbu:yb3=ybu 210 col=12:if a>0 then col=15 220 col2=12:if a>0 then col2=15 230 gcol col:move xb1,yb1:move xb2,yb2:plot85,xb3,yb3 240 gcol8:line xb1,yb1,xb2,yb2:line xb2,yb2,xb3,yb3:line xb3,yb3,xb1,yb1 250 next a:ages=(l2^2-l1^2)/4:print "die gesuchte flaeche=";ages reach the stars-q156|math olympiad|geometry|constructing squares 5.5% 33.3336071 die gesuchte flaeche=145.75 > ausführen mit bbc basic sdl und zum kopieren aus dem ergebnis fenster ctrl tab drücken.
Found max=8 and min =0.
GEAR 4th!!
Nice!
Welcome to Flat Earth.
Aren’t A,B,C,O concyclic here? 1:58
1:34 it can also be linked to similar triangles, great video as always 👍
Could you provide the complete question, I mean the statement?
Awesome solution. Just to show variety you can do it as well by connecting PC to get a diagonal of the square and then get it’s length by using this AP^2+PC^2=BP^2+PD^2 (can be proven by Pythagoras) and get PC = sqrt(3) then get the side of square and apply cosine rule on triangle APB
Thank you for the clear explanation and intreating problem
I think you missed a condition that a must be an integer, right?
a=24.
Replace x^2with x-1 to get instant soln
Follow up the following link if you want to solve grade 11 or o-level mathematics like a genius th-cam.com/video/YAM-A3vAXhk/w-d-xo.htmlsi=p_qOxs7SaHiezejV
Thanks for this video.But I want to ask something.q 's minimum value is not 16.q can be equal to 11.For exactly p=6 and q=11 5/11 < 6/11 < 4/7 If you look to this unequation , it is True. So why we don't take 11? Also I want to explain this solution: Please tell me if it is True or false. Firstly if these numbers are positive , we can multiply everywhere with 7q.So we will get 35<7p<4q , so p can be 6.And q can be 11 for the minimum value. (If these p,q are positive intigers.)
Hi, thanks for the comment. I double checked the scenario when p=6 and q=11, and it does not satisfy 5/9<p/q<4/7. 5/9 is not less than p/q in this case. I think you read the question wrong when u said 5/11<6/11<4/7. It is supposed to be 5/9<6/11<4/7 which is not true.
@@reachthestars98 Thanks.I read the number 9 as q . Thanks for help.
Great video! Though, how do you prove that y is in the interval from -1 to 1 (y z (-1;1))
To find the range of y, we can analyze the behavior of the function y=3^x. When x increases, the value of y gets very large, thus 2/(3^x+1) approaches 0, which makes y get very close to 1. When x decreases, the value of y gets very small, thus 2/(3^x+1) approaches 2, which makes y get very close to -1. So the interval would be (-1,1).
Let <QCB=a=<PBA and side AB=BC=x x*sin a=6 (6+7)*cos a=x ->13*cos a*sin a=6 ->sin 2a=12/13 ->cos 2a=5/13 ->1-2*sin(a)^2=5/13 -> sin a=2/sqrt(13) x=6/sin a=3*sqrt(13) -> area(ABCD)=x*x=117
Yes, that also works.
More easy with trigonometry!!!! Tg(DPC) = infinity = tg (CBA+DAB)
Bro this is Olympiad question I solved it in less than 5 seconds by seeing the thumbnail, wtf dawn easy, if this is Olympiad level than u will cry after seeing JEE advanced maths papers
471
because the three sides of dec triangle are a pithagoric tern
Great video, thanks. Can you explain why DEC angle is a right angle, thanks?
the reciprocal of the pythagorian theoreme
The Triangle satisfies the Pythagorean theorem, therefore it is a right triangle.
5-12-13 triangle belongs to a right triangle multiply each by 3, so that makes a 15-36-39 triangle that also belongs to a right triangle
I am curious that whether the following solution is acceptable or not. Just give a number for the value of the function such as 1 for positive 1 we need x1 = 3 for negative 1 we need x2 = 3/2 then 1/3 + 2/3 = 1 same answer however I am not sure that it is accepted
f(x²+1) = x⁴ + 2x² - 3 f(x) ? ================ f(x²+1) = x⁴ + 2x² - 3 f(x²+1) = (x⁴ + 2x² + 1) - 4 f(x²+1) = (x²+1)² - 4 f(x) = x² - 4 1:49
van Aubel's theorem. AF/FD= 8/7 + 6/7=2
Yes, that also works but it is a more advanced theorem that not everyone knows about.
Why is the point M the circle of center?
Point M was not part of the original question. First, we should find the center and radius of this circle. We can find the center by drawing the perpendicular bisectors of WZ and XY and finding their intersection point. This point happens to be the midpoint of AB, the hypotenuse, which I set as M. Hopefully this makes the problem more clear for you.
@@reachthestars98Thanks 😊
why does the 5 cancel the log in base 5 ?
we know e^lnx = x. this is equivalent to e^log_e(x) = x. in general, for any base b, b^log_b(x) = x similarly, 5^log_5(x) = x
@@MilesIsReal ok thanks
Knew answer in 5 seconds
Nice! Took me nearly 8 seconds.
same for me
cool solution
Thanks.
didn't understood a shit
If you didn’t understand the solution, feel free to ask me any questions about it.
It may not be obvious for some how you got from the x^2(y^2+1)+(y^2+1) step to (x^2+1)(y^2+1). You should also mention that the (y^2+1) multiplier was also factored out from both terms leaving (x^2+1). Just for clarity’s sake.
I will take note of that next time.
why does f(-x) the same as -f(x)? i want to learn but i cant grasp this part yet
This is a direct result of the definition of an odd function. Odd functions are defined as functions such that f(-x) = -f(x).
@@dylansalus9159 oh thanks bro🙏
The thumbnail does not match the video presentation. For those interested in the thumbnail's solution: g(x)=1/(1-x^2) and f(x)=x/(x^2-1)
Thanks for pointing that out. I fixed the thumbnail to match the video.
This function is periodic over the integers with a period of 2. You can start evaluating f(6) to move forward to see a period of 2, and you can also move backward with a little more effort. The assumption is that this function is defined over the integers.
Cos(EBC)=Sin(ABE). S=5^2-0.5*3*4-0.5*3*5*(3/5).
how do you know the period is 6?
The value??
BX=40/sin(60°-a)sina,s=20√3/sin (60°-a) FZ=41(√3-1)-40/sin(60°-a) sina a=-arccos((163-41√3)/2/√(83 24-41*82√3)+arccos(-40/√(8324- 41*82√3)) 11896 285/1487× s=20√3/sin120°=40
{y=X²-4X,0=(x-2)⁴-12(x-2)²-(x-2)+32; (z-2)³-17 3/4(z-2)-27 33/64=0 z=2+(880 1/2+√(1761²-71³*256/2 7)/2)¹/³/4+(..-..)..;2-(880 1/2+√ (1761²-71³*256/27)/2)¹/³/8-(..-..)..±√(3/4((880 1/2+√(1761²-71³*25 6/27)/2)¹/³/4+(..-..)..)²-17,75)i