- 120
- 127 911
Matko Males
เข้าร่วมเมื่อ 25 ก.ย. 2011
วีดีโอ
Što je to niz? Realni nizovi. Geometrijski niz. (1/4)
มุมมอง 107ปีที่แล้ว
Ovaj video je trebao biti drugi, a ne prvi u kratkoj seriji o nizovima. Naime nisam snimio video o osnovnim konceptima u nizovima, iako sam napravio materijale o tome (naslovi tih slajdova se vide na videu s lijeve strane, prvih desetak). No nije nuzno, moze se pratiti i od ovog videa, jer ponavljam najbitnije stvari iz tog "nesnimljenog". Taj prvi video je trebao biti pogled s druge strane na ...
Something stupid - live guitar cover
มุมมอง 242ปีที่แล้ว
..at the beautiful terrace of the Nautilus restaurant near Split Croatia Copyrights of original song: Author: C. Carson Parks Robbie Williams & Nicole Kidman
Matricne jednadzbe 1/2 - Osnovni koncepti i primjer
มุมมอง 2.3K3 ปีที่แล้ว
Matricne jednadzbe 1/2 - Osnovni koncepti i primjer
Derivacije funkcija 1/3 - Uvod - Derivacije elementarnih funkcija
มุมมอง 1.1K4 ปีที่แล้ว
Za interne potrebe
Skupovi 3/5 - Direktni/Kartezijev produkt skupova
มุมมอง 1.6K4 ปีที่แล้ว
Skupovi 3/5 - Direktni/Kartezijev produkt skupova
Skupovi 2/5 - Osnovne operacije sa skupovima
มุมมอง 1.1K4 ปีที่แล้ว
Skupovi 2/5 - Osnovne operacije sa skupovima
Egzaktne diferencijalne jednadzbe prvog reda
มุมมอง 1.5K4 ปีที่แล้ว
Egzaktne diferencijalne jednadzbe prvog reda
Funkcije vise varijabli - Uvjetni ekstrem
มุมมอง 7824 ปีที่แล้ว
Funkcije vise varijabli - Uvjetni ekstrem
Linearne diferencijalne jednadzbe drugog reda s konstantnim koeficijentima - Nehomogene Tip I
มุมมอง 3.7K4 ปีที่แล้ว
Linearne diferencijalne jednadzbe drugog reda s konstantnim koeficijentima - Nehomogene Tip I
Linearne diferencijalne jednadzbe drugog reda s konstantnim koeficijentima - Nehomogene Tip II
มุมมอง 3.2K4 ปีที่แล้ว
Linearne diferencijalne jednadzbe drugog reda s konstantnim koeficijentima - Nehomogene Tip II
Linearne dif. jedn. drugog reda s konstantnim koeficijentima - Osnovni koncepti, Homogene
มุมมอง 1.4K4 ปีที่แล้ว
Linearne dif. jedn. drugog reda s konstantnim koeficijentima - Osnovni koncepti, Homogene
Dif jedn II reda koje se svode na dj I reda - Osnovni koncepti i Tip I
มุมมอง 1K4 ปีที่แล้ว
Dif jedn II reda koje se svode na dj I reda - Osnovni koncepti i Tip I
Dif jedn II reda koje se svode na dj I reda - Tip III
มุมมอง 6264 ปีที่แล้ว
Dif jedn II reda koje se svode na dj I reda - Tip III
Dif jedn II reda koje se svode na dj I reda Tip II
มุมมอง 6824 ปีที่แล้ว
Dif jedn II reda koje se svode na dj I reda Tip II
Diferencijalne jednadzbe prvog reda - Bernoullijeve
มุมมอง 1.4K4 ปีที่แล้ว
Diferencijalne jednadzbe prvog reda - Bernoullijeve
Diferencijalne jednadzbe prvog reda - Linearne
มุมมอง 2.5K4 ปีที่แล้ว
Diferencijalne jednadzbe prvog reda - Linearne
Diferencijalne jednadzbe prvog reda - Homogene
มุมมอง 2.3K4 ปีที่แล้ว
Diferencijalne jednadzbe prvog reda - Homogene
Separacija varijabli 2/3 - Apsolutne vrijednosti u opcem rjesenju
มุมมอง 8874 ปีที่แล้ว
Separacija varijabli 2/3 - Apsolutne vrijednosti u opcem rjesenju
Spasio si me
Lepo objašnjeno, pozdrav sa Beogradskog univerziteta!
NE MOZE DA SE PUSTI VIDEO
Super! Hvala lipa!
Jedan od najboljiv videa koji pokrivaju ovu temu :)
32:35 , Postovani profesore mislam da je (k) = 1/4 a nije 1/2 . Veliki pozdrav do vama
1:14:39, da li ispod tgx fali korjen od 2?
Da, hvala na ispravci.
@@matko_males Hvala Vama profesore na klipovima, ostala mi je Matematika 2 na ETFu u Sarajevu i Vaši klipovi mi puno pomažu.
Svaka cast Matko,mnogo si mi pomogao,tvoji video snimci su objasnjeni odlicno.Svaka cast.
ovo je savrseno, hvala!
Bravo profa !!! Postavite, ako vam se da, i video o otplati zajma.
Hvala profa, na ovom videu. Hvala ! Molio bih Vas da postavite video počevši o osnovno o limesima i za ostale tipove i podtipove limesa koje ste spomenuli na početku ovog videa. Jer Vi to izvrsno objašnjavate, ako se iole prati što govorite, samo mamlaz neće razumjeti. Živio!!
Bravo gospodine Males.
Odlično. Matko.
SVAKA CAST! Ovako objasnjeno bi razumeli i oni sa srednjoskolskim znanjem...
Formula neprekidnog ukamaćivanja nije dobra!!!! Sam sebi je kontradiktorna!!!!!!! Godišnji porast jediničnog kapitala (C1-C0)/C0=e^(p/100)-1, a to nije p/100. Formula neprekidnog složenog ukamaćivanja je rješenje diferencijalne jednadžbe C'(t) = a C(t), gdje je a brzina (intenzitet) ukamaćivanja. Rješenje je funkcija (formula) C(t) = C0 (1+i(1)) ^ t , gdje je i(1)=e^a-1 kamatna stopa na jediničnom intervalu (npr. godini).
Formula neprekidnog složenog ukamaćivanja je rješenje diferencijalne jednadžbe C'(t) = a C(t), gdje je a brzina (intenzitet) ukamaćivanja. Rješenje je funkcija (formula) C(t) = C0 (1+i(1)) ^ t , gdje je i(1)=e^a-1 kamatna stopa na jediničnom intervalu (npr. godini).
NISAM VIDEO NA YOU TUBE NESTO BOLJE PRIKAZANO I OBJASNJENO !DECKO SVAKA TI CAST OSTANI U ZDRAVLJE!pozdrav iz makedonije
Hvala zemljak :)
hvala puno!
Inače ne komentiram previše po ovakvim tutorijalima ali ovo je bilo toliko prekrasno objašnjeno, pogotovo gdje ste pomoću grafa opisivali sve što moramo izvući iz zadatka da mi je bilo žao propustiti priliku i pohvaliti vas. Svaka vam čast na vrhunskom videu, definitivno ću pogledati još koju vašu lekciju
wow
Bravo super objasnjeno
*Odradi čitav zadatak* *završi zadatak sa 3+4=12*
:) 🤪
Super, hvala 👏👏👏👏👏
1:19:23 Pozdrav, šta nije da u formuli koja se koristi u ovoj minuti videa ide x+a/x-a, a ne a+x/a-x
Poštovani, u kojem programu rjesavate zadatke i koji program koristite za snimanje. Lijep pozdrav
Postovanje, koji program koristite za izradu zadataka? Mislim na ovaj gdje pisete, i da li koristite graficki tablet. Lijep pozdrav
Odlicno objasnjenje! hvala
Hvalaa puno, od velike pomoci je. Zanima me da li izbacujete video klipove shodno nekom planu i programu za odredjeni faks, posto me zanima kako se nalaze sopstveni vektori ako imamo dvostruke ili trostruke sopstvene vrednosti, kao i dizanje matrice na n-ti stepen metodom preko dijagonalne matrice :)))... Pozdrav i jos jednom hvala
Dobro objašnjeno!
Kako objasnjavatee joooj,sve na tenane i polako servirate... ne mogu da verujem... Stvarno svaka čast !
:)) .. ovo je bas bilo iskreno :).. Hvala, ali svaka cast i vama jer nazalost danas je malo studenata koji zele detaljna objasnjenja i razumijevanje, zele sto kraće i samo ono sto im treba za ispit..
Svaka čast!
:) hvala
58:54 kralj
Pozdrav da je z^3=(korj3xi+1)^9 i onda dobijemo da je tgfi= pi/3, to je 2^(9/3) x( cos3pi+isin3pi) ? ili 2^(9/3)x(cospi+ isinpi) ili je ovo isto samo zato sto se moze dijeliti sa 3 ,pa ispadne isto?inace ,svaka cast videa su vam odlicna!!
Pozdrav da je z^3=(korj3xi+1)^9 i onda dobijemo da je tgfi= pi/3, to je 2^(9/3) x( cos3pi+isin3pi) ? ili 2^(9/3)x(cospi+ isinpi) ili je ovo isto samo zato sto se moze dijeliti sa 3 ,pa ispadne isto? Innace najboji video iz ove lekcije sto sam nasla,svaka cast!!
Pitanje se odnosi na kompleksne brojeve? Nisam siguran da sam razumio. U svakom slucaju sigurno nije poanta u dijeljenju sa 3, nego jednostavno cos(3pi) je isti broj kao i cos(pi) ( ubaci u kalkulator i provjeri). Inace u zadatku koji si navela trebas 1. Kompleksni broj (sqrt(3)i+1) pretvoriti u trign oblik. Mozes ga oznaciti sa w1. 2. Taj w1 trebas onda potencirati na devetu (postoji formula za to).Dobiveni kompleksni broj mozes oznaciti sa w2. 3. Sad je z=trecikorijen od w2. Primijeni formulu da dobijes tri takva broja z1, z2, z3.
@@matko_males to sam i mislila,hvala vam puno,da radilo se o kompl,puno hvala i odlicna stranica!
Super su vam videa. Jako ste pomogli.
Bagget
Skoro bolji video iz ove oblasti nisam videla. Svaka Vam čast na ovako dobrom pojašnjenju i hvala na temeljnosti i preciznosti!
Hvala :)
još kad bi mogao da se pusti video
Masala masala
Odlican video, samo nastavi ! :)
od 0:56 do 2:28 se nesto dogodilo s mikrofonom te je vrlo tesko razaznati sto govorite