QuantFish
QuantFish
  • 253
  • 394 710
LCA vs. Factor Analysis: What is the Difference?
QuantFish instructor Dr. Christian Geiser explains the difference between latent class, latent profile, and factor analysis.
#Mplus #statistics #stats #geiser #quantfish #mplusforbeginners #statisticstutorials #EFA #CFA #SEM #statisticalanalysis #factoranalysis #factorloading #lca #lpa
FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter
FREE statistics workshops: www.goquantfish.com/collections/free-courses
FREE INTRO TO MIXTURE MODELING WITH MPLUS MINI-COURSE:
www.goquantfish.com/courses/introduction-to-mixture-modeling-with-mplus
FREE MPLUS FOR BEGINNERS COURSE:
www.goquantfish.com/courses/mplus-for-beginners
FACTOR ANALYSIS WITH MPLUS COURSE: www.goquantfish.com/courses/factor-analysis-in-mplus
LATENT CLASS ANALYSIS WITH MPLUS COURSE: www.goquantfish.com/courses/latent-class-analysis-with-mplus
LATENT CLASS ANALYSIS IN R COURSE: www.goquantfish.com/courses/latent-class-analysis-in-R
LATENT PROFILE ANALYSIS WITH MPLUS COURSE:
www.goquantfish.com/courses/latent-profile-analysis-with-mplus
LATENT TRANSITION ANALYSIS WITH MPLUS COURSE: www.goquantfish.com/courses/latent-transition-analysis-with-mplus
Dr. Geiser's BOOKS:
****Data Analysis with Mplus: amzn.to/3eg9vY4
****Longitudinal Structural Equation Modeling with Mplus: amzn.to/3ekOLOW
ON-DEMAND MPLUS COURSES:
****CFA & SEM with Mplus: www.goquantfish.com/courses/mplus-from-scratch
****Multilevel Modeling with Mplus: www.goquantfish.com/courses/multilevel-modeling-with-mplus
GET IN TOUCH with DR. GEISER:
****Facebook: ChristianGeiserAuthor
****Website: christiangeiser.com
ABOUT THIS INSTRUCTOR:
Dr. Christian Geiser is a quantitative psychologist, author of two books on Mplus, and a leader in the development of latent variable techniques for complex data. With his accessible books and sought-after workshops, he has helped thousands of researchers and students around the world to achieve their analytic goals. Visit his website at christiangeiser.com.
ABOUT QUANTFISH:
We bring top-level stats training from the world's leading methodologists to researchers and students all over the world. Learn more at goquantfish.com.
Some affiliate links may be included at no additional cost to purchasers.
มุมมอง: 52

วีดีโอ

What is a Heywood Case?
มุมมอง 884 ชั่วโมงที่ผ่านมา
QuantFish instructor Dr. Christian Geiser explains the meaning of the term "Heywood case" (improper solution) in CFA & SEM. #Mplus #statistics #geiser #quantfish #mplusforbeginners #sem #cfa #statisticstutorials #statisticalanalysis #stats FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics workshops: www.goquantfish.com/collections/free-courses Get Dr. Geiser's FREE S...
LCA vs. LPA: What is the difference?
มุมมอง 17516 ชั่วโมงที่ผ่านมา
QuantFish instructor Dr. Christian Geiser explains the difference between latent class analysis (LCA) and latent profile analysis (LPA). #Mplus #statistics #SPSS #geiser #statisticstutorials #mixture #lca #lpa #quantfish #LTA #mplusforbeginners #statisticalanalysis #stats #statisticalmodeling FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics workshops: www.goquantfis...
What is Measurement Invariance?
มุมมอง 8821 ชั่วโมงที่ผ่านมา
QuantFish instructor Dr. Christian Geiser explains the concept of measurement invariance/equivalence in confirmatory factor analysis (CFA). #Mplus #statistics #multigroup #geiser #quantfish #mplusforbeginners #statisticstutorials #CFA #SEM #psychometrics #psychometry #factoranalysis #factorloading #stats #statisticalanalysis #DIF #irt FREE weekly stats tips: mailchi.mp/goquantfish.com/newslette...
CFA & SEM: What Influences Model Fit?
มุมมอง 11214 วันที่ผ่านมา
QuantFish instructor Dr. Christian Geiser explains which factors influence model fit statistics in confirmatory factor analysis & structural equation modeling. #Mplus #statistics #stats #geiser #quantfish #mplusforbeginners #statisticstutorials #CFA #SEM #statisticalanalysis #fit #pathanalysis #statisticalmodeling FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics wor...
FREE No-Code Multigroup CFA
มุมมอง 10114 วันที่ผ่านมา
QuantFish instructor Dr. Christian Geiser shows how to run a multigroup confirmatory factor analysis without code in the free point-and-click software JASP (jasp-stats.org/). #Mplus #statistics #CFA #SEM #geiser #quantfish #statisticstutorials #mplusforbeginners #JASP #stats #factoranalysis #factorloading #lavaan #statisticalmodeling #statisticalanalysis #multigroup FREE weekly stats tips: mail...
How to interpret LPA Results
มุมมอง 16121 วันที่ผ่านมา
QuantFish instructor Dr. Christian Geiser explains how to interpret latent profile analysis (LPA) results. #Mplus #statistics #SPSS #geiser #statisticstutorials #mixture #lca #lpa #quantfish #LTA #mplusforbeginners #statisticalanalysis #stats #statisticalmodeling FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics workshops: www.goquantfish.com/collections/free-courses...
Linear regression in JASP (FREE software!)
มุมมอง 15121 วันที่ผ่านมา
QuantFish instructor Dr. Christian Geiser shows linear regression analysis in the free point-and-click software JASP (jasp-stats.org/). #lavaan #JASP #Mplus #statistics #CFA #SEM #geiser #quantfish #statisticstutorials #mplusforbeginners #stats #statisticalanalysis #regressionanalysis #regression FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics workshops: www.goquan...
FREE Scale Reliability Analysis in JASP
มุมมอง 13528 วันที่ผ่านมา
QuantFish instructor Dr. Christian Geiser shows how to conduct a classical test theory (CTT) scale reliability analysis in JASP. See also his playlist on CTT and reliability estimation: th-cam.com/video/1VXj6zMpwAk/w-d-xo.html #Mplus #statistics #SPSS #reliability #JASP #geiser #quantfish #statisticstutorials #cronbachsalpha #psychometrics #ctt #cfa #sem #statisticalanalysis #stats #factoranaly...
Regression Beta Coefficients Greater Than 1???
มุมมอง 21328 วันที่ผ่านมา
QuantFish instructor Dr. Christian Geiser discusses the reason for standardized regression coefficients greater than 1 in multiple regression analysis. #lavaan #JASP #Mplus #statistics #CFA #SEM #geiser #quantfish #statisticstutorials #mplusforbeginners #stats #statisticalanalysis #regressionanalysis #regression #suppression #dataanalysis FREE weekly stats tips: mailchi.mp/goquantfish.com/newsl...
Covariance Residuals in CFA & SEM Explained
มุมมอง 170หลายเดือนก่อน
QuantFish instructor Dr. Christian Geiser explains the meaning and significance of covariance residuals for model fit assessment in confirmatory factor analysis & structural equation modeling. #Mplus #statistics #stats #geiser #quantfish #mplusforbeginners #statisticstutorials #CFA #SEM #statisticalanalysis #fit FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics works...
3 FREE Programs for CFA & SEM!
มุมมอง 195หลายเดือนก่อน
QuantFish instructor Dr. Christian Geiser discusses the lavaan, JASP, and OpenMx software programs for estimating path analysis, CFA, & SEM. #Mplus #statistics #geiser #quantfish #mplusforbeginners #statisticstutorials #CFA #SEM #lavaan #R #lavaanforbeginners #Mplus2lavaan #stats #statisticalanalysis #statisticalmodeling #dataanalysis #pathanalysis #jasp #OpenMx #rprogrammingforbeginners FREE w...
No-Code Mediation & Path Analysis in JASP
มุมมอง 245หลายเดือนก่อน
QuantFish instructor Dr. Christian Geiser shows how you can generate and run lavaan syntax for CFA, SEM, latent growth curve, and mediation models using the free point-and-click software JASP (jasp-stats.org/). #lavaan #JASP #Mplus #statistics #CFA #SEM #geiser #quantfish #statisticstutorials #mplusforbeginners #stats #statisticalanalysis #mediation FREE weekly stats tips: mailchi.mp/goquantfis...
What is a Suppressor Effect?
มุมมอง 215หลายเดือนก่อน
QuantFish instructor Dr. Christian Geiser explains suppressor effects in multiple regression analysis. #lavaan #JASP #Mplus #statistics #CFA #SEM #geiser #quantfish #statisticstutorials #mplusforbeginners #stats #statisticalanalysis #regressionanalysis #regression #suppression #dataanalysis FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics workshops: www.goquantfish....
What is Latent Profile Analysis?
มุมมอง 546หลายเดือนก่อน
QuantFish instructor Dr. Christian Geiser provides a gentle introduction to latent profile analysis. #Mplus #statistics #SPSS #geiser #statisticstutorials #mixture #lca #lpa #quantfish #LTA #mplusforbeginners #statisticalanalysis #stats #statisticalmodeling FREE weekly stats tips: mailchi.mp/goquantfish.com/newsletter FREE statistics workshops: www.goquantfish.com/collections/free-courses Get D...
What is Reliability?
มุมมอง 211หลายเดือนก่อน
What is Reliability?
How to Interpret LCA Results
มุมมอง 224หลายเดือนก่อน
How to Interpret LCA Results
FREE Power Analysis in JASP
มุมมอง 207หลายเดือนก่อน
FREE Power Analysis in JASP
Exploratory Factor Analysis in JASP: FREE & EASY!
มุมมอง 2962 หลายเดือนก่อน
Exploratory Factor Analysis in JASP: FREE & EASY!
Classical Test Theory Analysis in Mplus
มุมมอง 992 หลายเดือนก่อน
Classical Test Theory Analysis in Mplus
How to Interpret CFA Results
มุมมอง 4892 หลายเดือนก่อน
How to Interpret CFA Results
SEM: How to Assess Model Fit
มุมมอง 1902 หลายเดือนก่อน
SEM: How to Assess Model Fit
No-Code SEM using FREE software
มุมมอง 4442 หลายเดือนก่อน
No-Code SEM using FREE software
Classical Test Theory Measurement Models Explained
มุมมอง 3252 หลายเดือนก่อน
Classical Test Theory Measurement Models Explained
How to fix a negative Cronbach's alpha
มุมมอง 3842 หลายเดือนก่อน
How to fix a negative Cronbach's alpha
What is Multilevel Analysis?
มุมมอง 1K2 หลายเดือนก่อน
What is Multilevel Analysis?
No-Code Latent Growth Curve Modeling in JASP
มุมมอง 2692 หลายเดือนก่อน
No-Code Latent Growth Curve Modeling in JASP
What is Latent Class Analysis?
มุมมอง 9773 หลายเดือนก่อน
What is Latent Class Analysis?
What is Composite Reliability?
มุมมอง 3583 หลายเดือนก่อน
What is Composite Reliability?
No-Code CFA in JASP (FREE SOFTWARE!)
มุมมอง 4783 หลายเดือนก่อน
No-Code CFA in JASP (FREE SOFTWARE!)

ความคิดเห็น

  • @ertugrulsahn
    @ertugrulsahn 6 ชั่วโมงที่ผ่านมา

    Hello dr geiser can you upload a invariance analyses for bifactor model in mplus? For categorical modeli

  • @suleymandemirgul5975
    @suleymandemirgul5975 วันที่ผ่านมา

    Hi Dr Geiser i have a question when I compare three model to each other configure metric and scalar they are all significant but I have 3000 sample size which means I can ignore this statistics and go on to the CFI TLI and RMSEA so when I go there they are mostly 0.80 in this case as far as I know I do not have to focus on whether they fit percent or not I need to focus on the CFI and Tli differences between metrics if they are below 0.010 and RMSEA 0.015 i hope you understand. Or as Chi square is significant and chi tli are all below 0.90 should I claim that I can not do comparison

    • @QuantFish
      @QuantFish วันที่ผ่านมา

      CFI and TLI values below 0.90 point to poor absolute fit. Below 0.80 would be really bad. I would address that first to make sure you have a well-fitting comparison (configural) model. Otherwise, the comparisons wouldn't be very meaningful. Best, Christian Geiser

    • @suleymandemirgul5975
      @suleymandemirgul5975 วันที่ผ่านมา

      @@QuantFish CFI 850 tTLI 874 in you case I can not make group comparison right now?

  • @drkmwinters
    @drkmwinters วันที่ผ่านมา

    Hi I like your content but you have a tendency to smack your lips right into the mic and and it's quite distracting especially with headphones. If you listen back you will hear that you do it every few sentences Just be more mindful of the mouth noises you are making into the mic and/or back off it

  • @fatihcelik7537
    @fatihcelik7537 2 วันที่ผ่านมา

    Dear Dr. You suggested that we use methods such as Monte Carlo simulations to plan the sample size before the study. Do you have a video on this?

    • @QuantFish
      @QuantFish 2 วันที่ผ่านมา

      Yes, see my free mini-workshop on sample size planning via simulation in Mplus: www.goquantfish.com/courses/sample-size-planning-in-mplus Best, Christian Geiser

  • @md.abdullaalwailykhanchowd3974
    @md.abdullaalwailykhanchowd3974 4 วันที่ผ่านมา

    Do I need to show model fitness when I draw simple path analysis between two variables in Amos? And do I also have to add the SEM model in each Hypothesis testing? Unfortunately none of my professors have done any thesis interpretation on Amos so I'm a bit clueless along my professors!

    • @QuantFish
      @QuantFish 4 วันที่ผ่านมา

      It depends on whether your model is over-identified (i.e., has > 0 degrees of freedom). Just identified (saturated) models (df = 0) always fit perfectly. Their fit cannot be tested. Best, Christian Geiser

  • @gavinaustin4474
    @gavinaustin4474 4 วันที่ผ่านมา

    Thanks Christian. Really enjoy your videos. I'd be interested in a video on exploratory SEM, particularly 'CFA-within-SEM'.

    • @QuantFish
      @QuantFish 3 วันที่ผ่านมา

      Thank you for the suggestion! Best, Christian Geiser

  • @va1001
    @va1001 5 วันที่ผ่านมา

    I dont get plot from my mplus (ver 8.6). It says that it is not provided. Do you know why that happens? Do I need another version?

    • @QuantFish
      @QuantFish 5 วันที่ผ่านมา

      Not sure why this is. You should be able to get a plot with that version. I would ask the Mplus team about this. Best, Christian Geiser

  • @traileidae6007
    @traileidae6007 5 วันที่ผ่านมา

    Thank you so much, this was very helpful!

  • @TheunsKotze-z8l
    @TheunsKotze-z8l 6 วันที่ผ่านมา

    Thank you for your excellent videos on CFA/SEM analysis. Please consider adding a video on the different estimation methods (e.g., ML, RML, DWLS, etc) available in JASP and lavaan. When should one consider using each of the estimation methods?

    • @QuantFish
      @QuantFish 6 วันที่ผ่านมา

      Thank you for the excellent suggestion. I will add this to my TH-cam to-do list! Best, Christian Geiser

  • @will74lsn
    @will74lsn 7 วันที่ผ่านมา

    In the data, you have one row per participant, and one column per variable (single-level wide format)?

    • @QuantFish
      @QuantFish 7 วันที่ผ่านมา

      Yes!

  • @will74lsn
    @will74lsn 7 วันที่ผ่านมา

    what would happen if we had also memory3 memory4 memory5 and SWB3 SWB4 etc? do you have video for that?

    • @QuantFish
      @QuantFish 7 วันที่ผ่านมา

      The principle would be the same. You would regress the time-3 variables on the time-2 variables, the time-4 variables on the time-3 variables and so on. Best, Christian Geiser

    • @will74lsn
      @will74lsn 7 วันที่ผ่านมา

      @@QuantFish Awesome! I understand there is an extension called the random intercept CLPM (by Hamaker). How does it compare to what is shown in this video? I am also wondering if meditation models can be properly tested with this approach. For instance, if I had the hypothesis that the effect of MEMORY on SWB is mediated by a third variable, I could add this to the model?

    • @QuantFish
      @QuantFish 6 วันที่ผ่านมา

      @@will74lsn The RI-CLPM adds a random intercept factor for each construct. I will make a separate video on that approach sometime in the future. Yes, you can certainly estimate mediation models within this framework (with either observed or latent variables). See, for example: Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558-577.

    • @will74lsn
      @will74lsn 6 วันที่ผ่านมา

      @@QuantFish I look forward to your next videos.

  • @will74lsn
    @will74lsn 7 วันที่ผ่านมา

    such a great video! Thanks

  • @chriskowalski4376
    @chriskowalski4376 8 วันที่ผ่านมา

    Hi Dr. Geiser, This is a great video! Thank you for everything you do! My indicators have 4 response categories, so I'd like to use the WLSMV estimator. Is there a way to do it using this method of Equivalence testing?

    • @QuantFish
      @QuantFish 7 วันที่ผ่านมา

      Yes, you can use ANALYSIS: MODEL = CONFIGURAL SCALAR; with categorical (ordinal) indicator variables. Best, Christian Geiser

  • @MichelleJackson-e6p
    @MichelleJackson-e6p 9 วันที่ผ่านมา

    Thank you QuantFish!

  • @tatemcconnell6827
    @tatemcconnell6827 10 วันที่ผ่านมา

    fantastic explanation!

    • @QuantFish
      @QuantFish 9 วันที่ผ่านมา

      Thank you! Best, Christian Geiser

  • @alessandrorosati969
    @alessandrorosati969 12 วันที่ผ่านมา

    I don't really understand what LCA and factor analysis have in common

    • @QuantFish
      @QuantFish 11 วันที่ผ่านมา

      I will make a separate video on LCA vs. factor analysis in the near future. Stay tuned! Best, Christian Geiser

  • @AudreyRenaud-daCosta
    @AudreyRenaud-daCosta 14 วันที่ผ่านมา

    Hi Dr. Geiser! I am wanting to reproduce this MC simulation on my own (very complex) data set to estimate post-hoc power. Most of my observed data is categorical (Likert scale data). The model I ran is a CFA analysis testing longitudinal measurement invariance, using a WLSMV estimator and Theta Parameterization. Here are the 3 problems/ questions I ran into: 1- All my observed variables are categorical. As such, I have added some specifications in the preliminary input (equivalent to your CFA 2 factor instructions). The commands go as such: TITLE --- DATA --- VARIABLES .. Names are.. IDVariable.. Missing.. Usevariables.. Categorigal. -- ANALYSIS .. Estimator (WLSMV).. PARAMETERIZATION (Theta). -- MODEL -- OUTPUT -- SAVEDATA. Is it approrpriate to add the categorical, estimator and parameterization specifications? How would that then be reflected in the MonteCarlo input instructions? 2- In my original CFA input instructions, my "Variables =" and my "usevariable =" are not the same, such that the dataset has more data than is used for the analysis. When I save the model parameters (in your example, est.dat), and then run the montecarlo instructions, I have many warning messages telling me that some variables are uncorrelated with all other variables, which makes sense because they are not the variables under evaluation. Should I only enter in the montecarlo input the variables in my model that were under "usevariable"? Relatedly, I also get error messages that tell me that my COVERAGE file (i.e., est.dat) does not contain enough data. Is that because it expects all the listed variables rather than the actual used variables on which the "est.dat" parameters are based? 2- Is there a possibility (or even need) to specify missing data? for example, in my original CFA input instruction, I could specify " MISSING = ALL (-99). Is it because this is a simulation, and as such, there is no "actual" missing data? Thank you for any help you can provide. Your videos are always helpful. Best!

  • @superrainbowfire1
    @superrainbowfire1 15 วันที่ผ่านมา

    Conceptualizing measurement invariance as "measurement equivalence" was very helpful for me to understand. Thank you!

    • @QuantFish
      @QuantFish 14 วันที่ผ่านมา

      Glad it helped! Best, Christian Geiser

  • @zannawaridi3815
    @zannawaridi3815 16 วันที่ผ่านมา

    Vielen Dank 💐

  • @zannawaridi3815
    @zannawaridi3815 17 วันที่ผ่านมา

    Vielen Dank für die Videos ! Die Methodenberatung meiner Uni hat mir den Quantfish Kanal empfohlen. Da ich neu im Thema Multigroup- SEM und Messinvarianz bin, haben mich die Videos sehr unterstützt. Nach vielen Recherchen ist für mich immer noch eine Frage offen: Wie passen die Modelle der Messäquivalenz (essenzielle Tau -Äquivalenz und Tau -Äquivalenz) der KTT zu den konfiguralen, metrischen und skalaren, strikten Messinvarainzen ? So wie ich es verstehe, ist die Tau kongenerischen Messäquivalenz mit dem konfiguralen Basis Modell Fit über SEM zu prüfen. Wie kann ich Tau -Äquivalenz prüfen ? Reicht dafür dass das metrische Modell der Messinvarianz angenommen wird mit nicht signifikantem Chi- Quadrat Differenztest oder brauche ich zusätzlich noch die Annahme der skalaren Messinvarianz?

    • @QuantFish
      @QuantFish 17 วันที่ผ่านมา

      Bei der Messinvarianz geht es um Vergleiche der Ladungen, Intercepts und Fehlervarianzen fuer ein und dieselbe Variable zwischen Gruppen (bzw. ueber Messzeitpunkte hinweg fuer dieselben Personen bei Laengsschnittstudien). Bei den KTT-Modellen geht es um Ladungs-, Intercepts-, und/oder Fehlervarianzaequivalenz zwischen verschiedenen Variablen innerhalb desselben Faktors. Dies ist ebenfalls im Rahmen der CFA testbar. Siehe dazu mein Video hier bzw. die umfangreiche QuantFish-Playlist zur KTT, in der ich Modelle der KTT einzeln bespreche: th-cam.com/video/KvZcKsilS50/w-d-xo.html th-cam.com/play/PL-kVjeOVYChrJnMGZ8W_WODnUEGuRP9fM.html Die KTT-Modelle sind geschachtelt (nested models) und koennen somit wie Modelle zur Messinvarianz ueber Chi-Quadratdifferenzwerte statistisch miteinander verglichen werden. Beste Gruesse, Christian Geiser

    • @zannawaridi3815
      @zannawaridi3815 15 วันที่ผ่านมา

      @QuantFish Vielen Dank für die Rückmeldung und Erklärung 🌻 Danke auch für die weiteren Video-Empfehlungen! Leider stellt meine Universität nicht die M-Plus Lizenz um der Videoanleitung zu folgen. Ich möchte zwei Testformen auf Tau -Äquivalenz prüfen und habe meine Analysen auf JASP nach der Anleitung zur Messinvarianz Prüfung mit einem genesteten Multigruppen SEM gemacht. Wenn ich das jetzt richtig verstanden habe, erfolgt es nach dem gleichen Prinzip nur mit den Testformen als Gruppen. Könnte dann, wenn das Modell der skalaren Messinvarianz auf JASP angenommen werden kann, auch von Tau -Äquivalenz ausgegangen werden, da für beide die Faktorladungen und Intercepts gleichgesetzt werden ? Danke und beste Grüße zurück 💐

    • @QuantFish
      @QuantFish 15 วันที่ผ่านมา

      @@zannawaridi3815 Ja, wenn die Ladungen und Intercepts innerhalb desselben Faktors fuer verschiedene gemessene Variablen jeweils gleich sind, liegt Tau-Aequivalenz vor. Beste Gruesse, Christian Geiser

  • @jpabrina2
    @jpabrina2 17 วันที่ผ่านมา

    Thanks. Great introduction to LPA

  • @anseyao1279
    @anseyao1279 18 วันที่ผ่านมา

    Thanks very much for this video, it is really helpful.

  • @sooryaks6671
    @sooryaks6671 20 วันที่ผ่านมา

    Sir..can we use efa extracted factors to do sem without doing cfa?

    • @QuantFish
      @QuantFish 19 วันที่ผ่านมา

      You could use EFA factor scores but it is usually recommended to do everything in one step (measurement & structural model combined) using SEM. Best, Christian Geiser

    • @sooryaks6671
      @sooryaks6671 19 วันที่ผ่านมา

      @QuantFish thank you sir..

    • @sooryaks6671
      @sooryaks6671 18 วันที่ผ่านมา

      Sir one more doubt..if reliability for all variables is already done and found satisfactory, then?

  • @2-0Re
    @2-0Re 20 วันที่ผ่านมา

    Hi and thank you for very helpful videos! I have been puzzling with one issue in terms of multilevel regressions: sometimes it happens that (standardized) regression coefficients have values greater than 1 at the between level (or even values like 3.2 or more). I've learned that this is likely to happen when there are only few variables in the model and when there is only little variance to be explained on the between level. In my example the studied relation is autoregression between the same variable at T1 and T2 (when multicollinearity is obvious). But I would like to know if there is some other explanations for the issue and how this kind of results and models should be interpreted (or should they?). Thank you if you have time for response!

    • @QuantFish
      @QuantFish 19 วันที่ผ่านมา

      It's probably due to strong correlations (collinearity) at the cluster (between) level. Best, Christian Geiser

  • @luisbp8162
    @luisbp8162 21 วันที่ผ่านมา

    Hello I just saw this tutorial and I would like to know what would be the difference or why would someone would choose to use JASP versus Python? What does JASP do better?

  • @alienskater135
    @alienskater135 23 วันที่ผ่านมา

    Thank you for the video! What are the next steps once a suppression effect ? How would we write this up in a results section for example?

    • @QuantFish
      @QuantFish 21 วันที่ผ่านมา

      You would probably want to determine first which type of suppression is present (i.e., classical, negative, reciprocal) and describe the results accordingly. Best, Christian Geiser

  • @danikatz94
    @danikatz94 23 วันที่ผ่านมา

    Hi! If some of my variables correlate with each other, would it make sense to allow them to covary in each latent class (rather than just in one, as in your example)? Thank you!

    • @QuantFish
      @QuantFish 22 วันที่ผ่านมา

      Yes, that is possible. Best, Christian Geiser

  • @NoraPeng-q5b
    @NoraPeng-q5b 27 วันที่ผ่านมา

    That is so helpful for my research! thanks a lot

  • @burcuksack4326
    @burcuksack4326 หลายเดือนก่อน

    Your video was incredibly helpful. It answered a question I've had for a long time. Thank you for the effort you put into creating this content.

  • @ahmadvalikhani6290
    @ahmadvalikhani6290 หลายเดือนก่อน

    What should we do if the model fit indices do not align with the data, but we still want to create a total score? (Modification indices cannot be used, as the total score will not be impacted by improving the model).

  • @FalcoLombardi-zt8ov
    @FalcoLombardi-zt8ov หลายเดือนก่อน

    Interesting example, I will keep that in mind. Thanks for the explanation.

  • @milescooper3322
    @milescooper3322 หลายเดือนก่อน

    I am running an SEM that has a couple of factors with only two indicators. I am struggling whether to use a summated scale or a factor. Your video was a tremendous help in lessening the struggle.

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Glad to hear that! Best, Christian Geiser

  • @milescooper3322
    @milescooper3322 หลายเดือนก่อน

    Thank you!

  • @tanishahill10
    @tanishahill10 หลายเดือนก่อน

    Thank you for this tutorial! I have missing data in my file and receive an MPlus error message that indicates - "TECH13 option not available for TYPE=MIXTURE with missing data." Any suggestions for a workaround?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Using listwise deletion may be an option although clearly not ideal. Perhaps the TECH13 option works with imputation, but I have not tried that myself. If not, I would reach out to the Mplus support team to see if they have a suggestion. Best, Christian Geiser

  • @suleymandemirgul5975
    @suleymandemirgul5975 หลายเดือนก่อน

    Hi Dear Dr. Geiser I have a three waves of data and t1 t2 and t3 because t2 is greater than t3 I can not do LGM. But when I free parameter t1dep@0 t2dep* t3 dep@3 it does not give me solution what should I do. and also I have another variable with T1-PPU T2-PPU and T3 PPU and I restrict all of them as there is no problem with ppu T1 ppu@0 t2ppu@1 t3ppu@2 how can I solve this

  • @UmitAksakal-o3g
    @UmitAksakal-o3g หลายเดือนก่อน

    thank you for your useful work TECHNICAL 13 OUTPUT SKEW AND KURTOSIS TESTS OF MODEL FIT PROBLEM OCCURRED DURING THE COMPUTATION OF MULTIVARIATE SKEW AND KURTOSIS TEST OF FIT. THIS IS MOST LIKELY DUE TO NEARLY SINGULAR INFORMATION MATRIX. I don't understand what I did wrong. any advise?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      I would contact the Mplus support team about this (support@statmodel.com). If you send them your Mplus license number, data, and output, they can help you out. Best, Christian Geiser

  • @septitmbn_
    @septitmbn_ หลายเดือนก่อน

    thankyou

  • @yulinurmalasari5088
    @yulinurmalasari5088 หลายเดือนก่อน

    I feel stuck about my data and found this video. Really helpful. Thanks a bunch!

  • @IMold363
    @IMold363 หลายเดือนก่อน

    My own personal opinion: R - excellent but requires a lot of practice in coding to become competent in its use. Data visualisation leaves a little to be desired - but its capabilities in data manipulation are second to none. JASP/JAMOVI - If SPSS and R had a baby! Intuitive and easy to use, but lags quite a bit with large and more complex datasets. Still missing a lot of features of that will hopefully be added soon! MPlus - Minor learning curve and quite expensive, but in my opinion the best tool for SEM. Powerful but a little clunky! For coding rookies: 1) Jasp 2) MPlus 3) R For coders: 1) R 2) Jasp 3) MPlus

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Thanks for sharing your opinion! I agree. Best, Christian Geiser

  • @IRSEvideo
    @IRSEvideo หลายเดือนก่อน

    Dear Christian, Thank you very much for this helpful video. I have a question regarding the number of measurement points needed to model the following scenario: A shock occurs at time t, resulting in a sudden decrease in the variable Y (a drop between t and t1) that was previously stable (e.g., no changes between t-1 and t or t-2 and t-1). After this, individuals may recover, and Y increases again (an increase between t1 and subsequent points, such as t2, t3, t4, etc.). Thank you very much in advance for any tips!

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Perhaps a growth model with free loadings or a latent change score model may be most useful in that situation. See, e.g., th-cam.com/video/igAgR_CoxGM/w-d-xo.html th-cam.com/video/0QUuP2BoMlk/w-d-xo.html th-cam.com/play/PL-kVjeOVYCho898N-WfIJpTNgtHWcdStL.html Best, Christian Geiser

    • @IRSEvideo
      @IRSEvideo หลายเดือนก่อน

      @@QuantFish Thank you for your swift and helpful reply!

  • @ErliangGao
    @ErliangGao หลายเดือนก่อน

    Thanks for your video! Very interesting! So, the suppressor effect is not a problem when we use the model to predict the y variable, right? I mean, in the model included x1 and x2, we can not say the verbal ability has a negative effect on the job_success, right?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Yes, that is correct. The sign of the regression coefficient isn't interpretable in this case. Nonetheless, the model with the suppressor included may be useful in terms of its predictive power; in fact, it is better than when the suppressor is excluded. Best, Christian Geiser

    • @paullefebvre1992
      @paullefebvre1992 26 วันที่ผ่านมา

      @@QuantFish I'm not understanding why the effect of the suppressor variable is uninterpretable. In your illustrated example, couldn't we say something like: the independent effect of verbal ability on job success is negative, controlling for the effect of exam scores on job success. In other words, when we take into account the fact that people with higher verbal ability tend to have higher exams scores (which are themselves positively associated with job success), higher verbal ability is actually associated with less success. Is it wrong to offer such an interpretation?

  • @sigmatabs9814
    @sigmatabs9814 หลายเดือนก่อน

    Good explanation sir..

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Thank you! Best, Christian Geiser

  • @tarikdemirok
    @tarikdemirok หลายเดือนก่อน

    Hello Dr. Geiser, Is there a cutoff value for discrimination such as in CFA item loadings (e.g between 0.3 and 1.0)? I have some items having discrimination values above 1.0 and wonder if they mean something is off. Thank you for the awesome video then again!

  • @PabloTheThinker
    @PabloTheThinker หลายเดือนก่อน

    JASP needs power analysis for the ANOVAs too.

  • @JasonHallarn-w9u
    @JasonHallarn-w9u หลายเดือนก่อน

    Hi Dr. Geiser, thank you for another informative video. I have conducted LPA in latent gold, and the output provides loadings for each indicator on the variable "cluster." These are provided in addition to the regression parameters. I am wondering what these loadings represent? Are these akin to factor loadings? How do they differ from the regression parameters?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      I haven't used Latent Gold recently so unfortunately I don't know what exactly the program outputs for an LPA. Their User's Guide should tell you more I would assume? Best, Christian Geiser

  • @Jessica.Souths
    @Jessica.Souths หลายเดือนก่อน

    Why could this not be shown on an Y and X axel? With time being the X-axel, slope being the line/curve between the different points, intercept the starting point on the y-axel and epsilon makered by different colors?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      It is indeed possible to plot individual and average growth curves in this way. See my other video here: th-cam.com/video/0G-b5d8EoGg/w-d-xo.html Best, Christian Geiser

  • @tarikdemirok
    @tarikdemirok หลายเดือนก่อน

    Thank you so much Dr. Geiser. I refer to your videos so often that I feel like I should list you as a co-author in my work:) Could you point to some references on using CFA without EFA?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      I can't think of a specific reference but I seem to remember that there was a longer discussion of the "CFA after EFA" issue on the SEMNET listserv. They may have discussed relevant references there. You can search the SEMNET archives here: listserv.ua.edu/cgi-bin/wa?REPORT=SEMNET&z=4&L=SEMNET&1=SEMNET&X=&Y= This requires you to sign up for the list (it's free). Best, Christian Geiser

  • @user-mz3xd6sg3n
    @user-mz3xd6sg3n หลายเดือนก่อน

    Thank you for the video! Is DIFFTEST also sensitive to large sample size?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Like any significance test, its power to detect differences increases with increasing sample size. Best, Christian Geiser

  • @LieuTran-z3x
    @LieuTran-z3x หลายเดือนก่อน

    Dear Dr. Christian Geiser, your videos are really helpful to me. I have a question regarding the error I got. The idea is that I have a 3-level hierarchical dataset (longitudinal time points nested in family IDs and then nested in site IDs), and I'd like to check how many classes in this data. When I include the covariates (age and sex) into the process to determine the class membership. This is my script: TITLE: "Trajectory modelling of depression scores" DATA: FILE = b4_NOTign.csv; VARIABLE: NAMES = depm0-depm5 deps0-deps5 age4 agepre sex r_white r_black r_other r_asian r_aian r_nhpi r_mixed income under_pov pub fam_id site_id age age_Mar20 rid edu_p; !age is latest age USEVARIABLES = depm0-depm5 age sex fam_id site_id; CATEGORICAL = sex; CLASSES = class (3); CLUSTER = fam_id; STRATIFICATION = site_id; MISSING = ALL (999999); ANALYSIS: TYPE = TWOLEVEL COMPLEX RANDOM MIXTURE; MODEL: %WITHIN% %OVERALL% intw slopew | depm0@0 depm1@1 depm2@2 depm3@3 depm4@4 depm5@5; slopew@0 %BETWEEN% %OVERALL% intb slopeb | depm0@0 depm1@1 depm2@2 depm3@3 depm4@4 depm5@5; slopeb@0 intb slopeb ON age sex; However, I always get this error: *** ERROR in MODEL command Unrestricted x-variables in TWOLEVEL MIXTURE analysis must be specified as either a WITHIN or BETWEEN variable. The following variable cannot exist on both levels: AGE *** ERROR in MODEL command Unrestricted x-variables in TWOLEVEL MIXTURE analysis must be specified as either a WITHIN or BETWEEN variable. The following variable cannot exist on both levels: SEX Could you please help me troubleshoot this? I really appreciate your help!

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      Have you tired specifying SEX and AGE as BETWEEN variables in the VARIABLE command? Best, Christian Geiser

    • @LieuTran-z3x
      @LieuTran-z3x หลายเดือนก่อน

      @@QuantFish Dear Dr Christian Geiser, thank you for your response. Yes, I checked and got the error that One or more between-level variables have variation within a cluster for the following clusters. Check your data and format statement. My data did have this issue. In this case, do you have any suggestion? Thank you!

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      @@LieuTran-z3x Try specifying VARIABLE: BETWEEN = AGE SEX; Best, Christian Geiser

    • @LieuTran-z3x
      @LieuTran-z3x หลายเดือนก่อน

      ​@@QuantFish Dear Dr Christian Geiser, I got this error when I include this command: *** ERROR One or more between-level variables have variation within a cluster for the following clusters. Check your data and format statement. *** WARNING One or more individual-level variables have no variation within a cluster for the following clusters.

  • @CoryCobbthaProf
    @CoryCobbthaProf หลายเดือนก่อน

    Thanks for the video. What about when the first part of the output for the configural, metric, and scalar models have significant chi square values but the comparison models (e.g., configural vs metric, metric vs scalar, etc.) do not?

    • @QuantFish
      @QuantFish หลายเดือนก่อน

      When the less restricted model does not fit according to the chi-square model fit test, strictly speaking, chi-square difference tests relative to other models should not be conducted. For example, when the configural model is rejected according to the chi-square test, it doesn't make a lot of sense to compare it to the metric model (which is even more restricted) using a chi-square difference test . Best, Christian Geiser