Brian Jackson
Brian Jackson
  • 123
  • 224 870

วีดีโอ

Thin dust devil passing through our network on Alvord Desert - 2024 Jun 24
มุมมอง 456 หลายเดือนก่อน
An optically thin dust devil passed through our weather station network on Alvord Desert on 2024 Jun 24.
Dust devil on Alvord Desert - 2024 Jun 24
มุมมอง 306 หลายเดือนก่อน
A huge dust devil we saw on Alvord as we were getting set up on 2024 Jun 24
Huge dust devil spotted upon arrival at Alvord Desert - 2024 Jun 24
มุมมอง 306 หลายเดือนก่อน
A huge dust devil we saw just as we arrived at the Alvord Desert on 2024 Jun 24. We hadn't managed to set up our instruments yet.
Dust curtain passing just east of our network on Alvord Desert - 2024 Jun 26
มุมมอง 166 หลายเดือนก่อน
Dust curtain passing just east of our network on Alvord Desert on 2024 Jun 26
Dust curtain passing the west side of our network on Alvord Desert - 2024 Jun 25
มุมมอง 106 หลายเดือนก่อน
Dust curtain passing the west side of our network on Alvord Desert on 2024 Jun 25
Dust curtain passing on the west of network on Alvord Desert - 2024 Jun 25
มุมมอง 66 หลายเดือนก่อน
A dust curtain likely passing through the west end of our weather station network on the Alvord Desert on 2024 Jun 25
Small dust devil just west of our network on Alvord Desert - 2024 Jun 25
มุมมอง 236 หลายเดือนก่อน
A small dust devil which likely just passed west of our network on Alvord Desert on 2024 Jun 25.
Dust curtain west of our network on Alvord Desert - 2024 Jun 25
มุมมอง 156 หลายเดือนก่อน
A thin dust curtain blowing just west of our weather station network on the Alvord Desert on 2024 Jun 25
Enormous dust devil north of met network on Alvord Desert- 2024 Jun 25
มุมมอง 116 หลายเดือนก่อน
A huge dust devil a little ways north of our field site on Alvord Desert from 2024 Jun 25
Near-miss by a dust devil on Alvord Desert - 2024 Jun 25
มุมมอง 256 หลายเดือนก่อน
A large-ish dust devil passes near but not quite through our network of weather stations on the Alvord Desert on 2024 Jun 25.
Dust curtain blowing through network on Alvord Desert - 2024 Jun 26
มุมมอง 66 หลายเดือนก่อน
A large dust curtain blew through our mini-network of weather stations, knocking several of them over.
Ingenuity Flight 1 Dust-Lifting Video
มุมมอง 66ปีที่แล้ว
This is a video from Lemmon et al. (2022) - agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JE007605. I claim no rights for this video whatsoever. I just posted it on youtube to make it easier for me to access.
Perseverance Views Dust Devils Swirl Across Jezero Crater
มุมมอง 502 ปีที่แล้ว
Perseverance Views Dust Devils Swirl Across Jezero Crater
Drone wind speed experiment on Seal Beach, CA
มุมมอง 312 ปีที่แล้ว
Drone wind speed experiment on Seal Beach, CA
Ash devil near Great Sand Dunes National Park in Colorado
มุมมอง 1002 ปีที่แล้ว
Ash devil near Great Sand Dunes National Park in Colorado
Sand Blowing on Bruneau Sand Dune Park's Baby Dune
มุมมอง 342 ปีที่แล้ว
Sand Blowing on Bruneau Sand Dune Park's Baby Dune
Brian Jackson's DPS 2021 Presentation on PSJ
มุมมอง 923 ปีที่แล้ว
Brian Jackson's DPS 2021 Presentation on PSJ
Brian Jackson's DPS 2021 Presentation
มุมมอง 443 ปีที่แล้ว
Brian Jackson's DPS 2021 Presentation
Dust Devil Encounter on Alvord Desert on 2021 Jul 8
มุมมอง 1053 ปีที่แล้ว
Dust Devil Encounter on Alvord Desert on 2021 Jul 8
Surveying the Kestrel network at the Alvord Desert on 2021 Sep 1.
มุมมอง 243 ปีที่แล้ว
Surveying the Kestrel network at the Alvord Desert on 2021 Sep 1.
Dust Devil Encounter on 2021 July 8 on the Alvord Desert
มุมมอง 1213 ปีที่แล้ว
Dust Devil Encounter on 2021 July 8 on the Alvord Desert
Dust Devil Encounter on San Rafael Swell on 2021 May 28
มุมมอง 1493 ปีที่แล้ว
Dust Devil Encounter on San Rafael Swell on 2021 May 28
Neptune as seen by Voyager
มุมมอง 1423 ปีที่แล้ว
Neptune as seen by Voyager
UF100 - How to Install Chrome and Activate Flash
มุมมอง 314 ปีที่แล้ว
UF100 - How to Install Chrome and Activate Flash
Sec. 4.7 - Curvilinear, One-Dimensional Systems
มุมมอง 6K5 ปีที่แล้ว
Sec. 4.7 - Curvilinear, One-Dimensional Systems
Dust Devil Encounter on 2019 May 9 at 1:35p PDT on the Alvord Desert
มุมมอง 1835 ปีที่แล้ว
Dust Devil Encounter on 2019 May 9 at 1:35p PDT on the Alvord Desert
Dust Devil Encounter on 2019 May 9 at 1:28p PDT on the Alvord Desert
มุมมอง 865 ปีที่แล้ว
Dust Devil Encounter on 2019 May 9 at 1:28p PDT on the Alvord Desert
Dust Devil Encounter on 2019 May 9 at 12:36p PDT on the Alvord Desert
มุมมอง 2105 ปีที่แล้ว
Dust Devil Encounter on 2019 May 9 at 12:36p PDT on the Alvord Desert
Dust Devil Encounter on 2019 May 9 at 12:31p PDT on the Alvord Desert
มุมมอง 1645 ปีที่แล้ว
Dust Devil Encounter on 2019 May 9 at 12:31p PDT on the Alvord Desert

ความคิดเห็น

  • @Twitledum9
    @Twitledum9 หลายเดือนก่อน

    hi prof at 3:57 can you please clarify/confirm that A is the accel of the *non* intertial frame? It seems to me to be the accel of the inertial frame Snot not S- thx !

    • @brianjackson415
      @brianjackson415 29 วันที่ผ่านมา

      A is the acceleration of the non-inertial frame AS SEEN IN the inertial frame. I switched from R_0 double-dot to A. Sorry for the confusion.

    • @Twitledum9
      @Twitledum9 29 วันที่ผ่านมา

      @@brianjackson415 thanks for replying prof. Final exam is in 20 min haha. Say, you reference some videos that seem to exist but also dont seem to be uploaded to TH-cam... like chptr section 9.4/.5 Did you ever record those lectures/ have lectures on later chapters like 11 and 16

    • @brianjackson828
      @brianjackson828 29 วันที่ผ่านมา

      @@Twitledum9 I did not manage to make videos for every chapter in Taylor, I'm afraid.

    • @Twitledum9
      @Twitledum9 29 วันที่ผ่านมา

      @ no matter, im sure they would have been great. Really enjoyed your (simplified) approach to the material. Really helped me

    • @brianjackson415
      @brianjackson415 29 วันที่ผ่านมา

      @@Twitledum9 Happy they're helpful. Good luck on the test.

  • @Twitledum9
    @Twitledum9 หลายเดือนก่อน

    I believe its 4:48 Pi*qi {double dot} professor

    • @Twitledum9
      @Twitledum9 หลายเดือนก่อน

      Woops i see that it was corrected. Thanks prof

  • @Twitledum9
    @Twitledum9 2 หลายเดือนก่อน

    Hi at 5:34 does 'u' have a special name or we just use it as a dumby variable to help solve this difff equation in r?

    • @brianjackson415
      @brianjackson415 2 หลายเดือนก่อน

      u is defined as 1/r. It's NOT a dummy variable.

    • @Twitledum9
      @Twitledum9 2 หลายเดือนก่อน

      I had a brain fart... ty for taking the time to respond Prof. I did well on my exam because of your videos. much appreciated!!

    • @brianjackson415
      @brianjackson415 2 หลายเดือนก่อน

      @@Twitledum9 Wow, I'm honored that I was able to help that much. Thanks for letting me know.

  • @Twitledum9
    @Twitledum9 2 หลายเดือนก่อน

    At 1:29, why does mu lost it's square? Shouldn't mu be squared in the partial derivative term?

    • @brianjackson415
      @brianjackson415 2 หลายเดือนก่อน

      Good catch. That appears to be a typo, and mu should be squared. Apologies for the confusion.

    • @Twitledum9
      @Twitledum9 2 หลายเดือนก่อน

      @@brianjackson415 ahh - Thank you!! I really appreciate your lectures, Professor Jackson! I missed a lot of class and they are definitely a huge aid in helping me prepare for the exam! 👊

  • @michaelrose6853
    @michaelrose6853 4 หลายเดือนก่อน

    at 14:14, does that orthogonality depend on delta phi being infinitesimal

    • @brianjackson415
      @brianjackson415 4 หลายเดือนก่อน

      Yes. A finite delta phi would give a delta r vector that has some component along r-hat.

    • @michaelrose6853
      @michaelrose6853 4 หลายเดือนก่อน

      @@brianjackson415 Makes sense, thanks for your videos, great resource while going through Taylor

  • @SoumikSahoo-s2l
    @SoumikSahoo-s2l 4 หลายเดือนก่อน

    Tq

  • @engineerahmed7248
    @engineerahmed7248 8 หลายเดือนก่อน

    He got complete grasp of subject...Wish used 8 times bigger white board

  • @jourdancrossley9474
    @jourdancrossley9474 ปีที่แล้ว

    😮😮😮😮😮😮😮😮

  • @tongxie7078
    @tongxie7078 ปีที่แล้ว

    Luckily, I found this video right before dropping the course. The explanation is way more straightforward than my professor's.

  • @misomiso1004
    @misomiso1004 ปีที่แล้ว

    Thank you!

  • @purplegirl6176
    @purplegirl6176 ปีที่แล้ว

    Thank you!

  • @mh3fe
    @mh3fe ปีที่แล้ว

    Vc tem o capítulo 3 completo.. Pfv

  • @markkennedy9767
    @markkennedy9767 ปีที่แล้ว

    Hi, I was hoping you could answer something about the angular velocity vector: When I take an angular velocity omega in 3 space and decompose it into its x, y and z components, omega_1, omega_2 and omega_3 respectively, we expect the magnitude of the angular velocity vector to be: |omega| = square root of ((omega_1)^2+(omega_2)^2+(omega_3)^2). However, if you think about the rotation of a body described by the omega vector: Let's say it does one full rotation in 1 second. Physically, the projections of this rotation onto the yz plane, xz plane and xy plane correspond respectively to the x, y and z components of omega above and each of these projections (of the body onto the respective planes) all undergo one full rotation in 1 second also. So, on the face of it, the angular velocities of each of these components are on average (over one rotation) the exact same as the magnitude of the angular velocity of our vector omega (if we trace out the motion of the body itself and the motions of the projections of the body): |Omega| = omega_1 = omega_2 = omega_3 This contradicts the decomposition above. Can you explain what's going on here and what assumptions above are false. I would be very grateful if you could offer help with this as I can't get answers anywhere else. I'm interested in fitting the mathematics with the relevant physics. Thanks.

    • @brianjackson415
      @brianjackson415 ปีที่แล้ว

      I think the confusion you have here is that you've described two different rotation states. For the first rotation state you've described, you've said the rotation vector has a magnitude of 1 rotation per second ("Let's say it does one full rotation in 1 second"), but for the second state you've described, you're saying the rotation vector has a magnitude of sqrt(3) rotations per second ("all undergo one full rotation in 1 second also"): sqrt((rot about x)^2 + (rot about y)^2 + (rot about z)^2) = sqrt(1 + 1 + 1) = sqrt(3). Those descriptions represent two different rotation states, I think. That's why they don't seem to agree.

    • @markkennedy9767
      @markkennedy9767 ปีที่แล้ว

      @@brianjackson415 Hi Brian, thanks for your reply. Yeah they definitely are different (for one, the projection rotations are ellipses and the rotation around the vector omega is a circle). But I still puzzle over what the connection is between the two types of rotation states (as you call them) since they are related physically. And yeah I could just accept the second rotation state (as you describe) is described mathematically as the square root of the sum of the squares and be done with worrying how the projections' rate of rotation is reconciled with this. But that feels wrong to not explore this and find the relationship between the two rotation states. It also requires me to accept that omega is an actual vector (see next paragraph 🙂). Can you comment on any possible relationship between these relation states. One more thing: accepting the mathematical square root of the sum of the squares relationship obviously means accepting angular velocity vectors as vectors. I can accept this mathematical relationship if I can be convinced that angular velocity is a vector. Normally textbooks just get you to accept that angular velocity is a vector. At the most they just tell you that since infinitesimal rotations commute, d(theta_1)/dt and d(theta_2)/dt etc commute so angular velocity must be a vector. This doesn't quite follow. Such commutativity is necessary but not sufficient for these to be vectors so you're still wondering why exactly angular velocity is a vector and in turn, left unconvinced by the square root of the sum of square relationship. Can you comment on why omega is definitely a vector, given the above. Thanks for your time.

    • @markkennedy9767
      @markkennedy9767 ปีที่แล้ว

      Hi can you comment on this. If you can't comment further on the first bit of my reply, that's ok. But can you explain why angular velocity is regarded as a vector in the context of what I have written in the second half of the reply. Any help would be greatly appreciated. Thanks.

    • @brianjackson415
      @brianjackson415 ปีที่แล้ว

      @@markkennedy9767 I'm not sure I could easily explain why the commutativity properties mean that angular momentum has to be a vector. But the main reason we treat angular velocity as a vector is because it has a magnitude (# of spins per second) and a direction (where is the rotation axis pointing). For example, consider the Earth's rotation vector. Small shifts over 26,000 years in the *direction* of the Earth's rotation mean that the Earth's north pole does not always point at the North Star, even though the rate at which the Earth rotates (the length of a day) might not change. In order to completely describe Earth's rotation we need to know both how long a day is and where the rotation axis points. That's a vector.

    • @markkennedy9767
      @markkennedy9767 ปีที่แล้ว

      @@brianjackson415 Hi Brian, thanks for getting back. Yeah, I suppose angular velocity has a magnitude and direction when they are defined this way (which seems like a natural way to define them in fairness). But then I'm back to whether we can be sure that its component vector in the x direction (with its magnitude and direction defined in this way) plus its component in the y direction (with its magnitude and direction defined in this way) plus its component in the z direction (with its magnitude and direction defined in this way) gives back the angular velocity vector (with its magnitude and direction defined in this way). I don't think it's obvious (or trivial) that this follows just by saying we will say that all these objects have a magnitude and direction (as defined in this way). I think what I'm getting at is, it is far easier to see how this would follow if we were dealing with ordinary velocity and its components. Or displacement and its components: I can see how the physical velocity and its components can be defined mathematically (using magnitude and direction) and how we can then add them like vectors. So I can see how it's obvious that ordinary velocity is a vector in this way. It doesn't quite work as simply for angular velocity though when we do the same process as in the last paragraph: when we go from the physical notion of angular velocity to its mathematical definition (using magnitude and direction), there is an extra leap of faith at this point, compared to the ordinary velocity case: for angular velocity, when we go from the physical notion of angular velocity to the mathematical definition of its magnitude and direction, it's not as obvious that this definition of magnitude and direction confers on angular velocity a vector status (as was obvious in the case of ordinary velocity). Does this make sense. So even though we have mapped the physical attributes of angular velocity (the instantaneous angular speed of the object and the direction of the axis around which it rotates) to the mathematical definition of magnitude and direction, i'm still not convinced (as natural as this mapping seems) that this confers on angular velocity vector status. Can you comment on any of this to convince me otherwise. Or failing that, maybe you can comment on how the commutativity of Infinitesimal rotations we talked about previously does actually imply vector status. If you can shed any light on this, it would be brilliant. Thanks.

  • @esaff3761
    @esaff3761 ปีที่แล้ว

    @3:58 here I have confusion. I think in (dL/dt)rot, L would always be zero . Because rotating frame is rotating along with rigid body, so *angular velocity must be zero according to observer in rotating frame* and hence at every instant *angular momentum must also be zero according to observer in rotating frame*....

    • @misomiso1004
      @misomiso1004 ปีที่แล้ว

      In my opinion, Rotating frame is rotating with angular velocity. But angular momentum vector can not be parallel with angular velocity vector so (dL)rot comes.

    • @misomiso1004
      @misomiso1004 ปีที่แล้ว

      I think it would be a answer. dL/dt (rot) means rate of change of L(angular momentum for fixed reference frame) measured in rotating frame.

  • @sebastian-azcarate
    @sebastian-azcarate ปีที่แล้ว

    Very helpful, thanks so much!

  • @jameshopkins3541
    @jameshopkins3541 ปีที่แล้ว

    very bad like a clusterfuck!

  • @dbgsdc3913
    @dbgsdc3913 2 ปีที่แล้ว

    Sir are u a German

    • @brianjackson415
      @brianjackson415 2 ปีที่แล้ว

      I am not. : )

    • @esaff3761
      @esaff3761 ปีที่แล้ว

      ​@@brianjackson415 @3:58 here I have confusion. I think in (dL/dt)rot, L is always zero . Because rotating frame is rotating along with rigid body, so *angular velocity must be zero according to observer in rotating frame* and hence at every instant *angular momentum must also be zero according to observer in rotating frame*....

  • @Wyrm_Hero
    @Wyrm_Hero 2 ปีที่แล้ว

    Okay, this is nice. But how do I use this to assemble the best BEYBLADE?😂😂😂

  • @mastershooter64
    @mastershooter64 2 ปีที่แล้ว

    I liked the intro :)

  • @abhishekcp5425
    @abhishekcp5425 2 ปีที่แล้ว

    Love u bro

  • @LL-mq7gj
    @LL-mq7gj 2 ปีที่แล้ว

    At 6.12 why do we need the chain rule here ?

    • @brianjackson415
      @brianjackson415 2 ปีที่แล้ว

      The functional f doesn't explicitly depends on alpha, but the function capital Y does. So you need to apply chain rule to calculate df/d(alpha). Hope that helps.

  • @edyt4125
    @edyt4125 2 ปีที่แล้ว

    Excellent video!

  • @mariomuysensual
    @mariomuysensual 2 ปีที่แล้ว

    I love you man, thanks!

  • @asiergonzalezgarcia54
    @asiergonzalezgarcia54 3 ปีที่แล้ว

    Great explanation.

  • @maxbingen8773
    @maxbingen8773 3 ปีที่แล้ว

    12:46, is there a mistake with a negative sign?

    • @brianjackson415
      @brianjackson415 3 ปีที่แล้ว

      Hmm, I don't think so? Why do you think there's a mistake?

    • @LKB-mc7tr
      @LKB-mc7tr 11 หลายเดือนก่อน

      @@brianjackson415 at 10:56, when bringing it across the = sign A+B=0 and said A = B. Should be -B. (B=Vter*Tao*ln(1-stuff))

    • @LKB-mc7tr
      @LKB-mc7tr 11 หลายเดือนก่อน

      everything else is perfect so great video!

    • @LKB-mc7tr
      @LKB-mc7tr 11 หลายเดือนก่อน

      also the - sign didn't matter. He was just showing us that it was transcendental to get us to solve for Ln (1-E).

  • @ignatiusjacquesreilly70
    @ignatiusjacquesreilly70 3 ปีที่แล้ว

    To be clear, is alpha itself a function of x? It's not a constant, right?

  • @steffenleo5997
    @steffenleo5997 3 ปีที่แล้ว

    Great explanation on your Video Mr Jackson... 👍👍... Thank you So much... 👍

  • @muhammadabbaskhambra1109
    @muhammadabbaskhambra1109 3 ปีที่แล้ว

    Good work sir

  • @SyedAafeen
    @SyedAafeen 3 ปีที่แล้ว

    You did a great job covering the topics man. Even though these lectures were recorded years ago, they are still benefiting students like me :)

  • @AkashShaan
    @AkashShaan 3 ปีที่แล้ว

    How is U defined when the force is time dependent? We no longer can define it by the line integral of force because of the explicit time dependence, unlike the case of conservative force where there was no explicit time dependence. Do we just assume that it exists, if yes then how do we still calculate it for a given time dependent force?

    • @brianjackson415
      @brianjackson415 3 ปีที่แล้ว

      Good question! We have to be careful what we mean by "time-dependent force" because the force that a particle sees may change (1) because the force at a point in space changes with time AND/OR (2) because the particle is in motion and therefore encounters a force that changes with position over the particle trajectory. I presume you are thinking about the former case (force at a point changes with time). In that case, we can associate a potential energy with that force by taking the line integral at a given instant in time. There's nothing about the line integral calculation that explicitly involves time, so I think would work.

    • @AkashShaan
      @AkashShaan 3 ปีที่แล้ว

      @@brianjackson415 Thanks for the reply. Don't you think taking the line integral of a force at an instant of time would give a potential energy that is independent of time, thus making the force, which is the gradient of that potential energy, time independent(I mean explicitly independent of time)? The force that we were calculating the potential energy for, was explicitly dependent on time (The former case). My confusion is, can we still use the line integral of a force with explicit time dependence(Non-conservative force) to calculate the potential energy for that force, because the line integral won't be equal to the change in potential energy, unlike in the case of conservative forces. Of course we can still calculate the line integral itself, it'd even be equal to the work done by the force, it's just that it won't be equal to the change in potential energy, as far as I know.

    • @brianjackson415
      @brianjackson415 3 ปีที่แล้ว

      @@AkashShaan If the force itself depends on time, then the value of the line integral over a given path will, by definition, depend on time.

  • @muazhaziq2992
    @muazhaziq2992 3 ปีที่แล้ว

    sorry, i didn't understand why R sin theta?

    • @brianjackson415
      @brianjackson415 3 ปีที่แล้ว

      Think about what happens in the limit when theta is zero. That represents someone standing, for example, exactly at the North Pole. That person's velocity would be zero. They might be rotating around, but they're not moving at all.

  • @menschenskind4870
    @menschenskind4870 3 ปีที่แล้ว

    When should the not existing, but religios hyped, earth curvature appear...?

  • @benebeck5628
    @benebeck5628 3 ปีที่แล้ว

    thx bro

  • @solutionstounsolved8931
    @solutionstounsolved8931 3 ปีที่แล้ว

    th-cam.com/video/3JfV6Dx8_FQ/w-d-xo.html

  • @lawmsanga-b4j
    @lawmsanga-b4j 3 ปีที่แล้ว

    Your videos are a blessing to me❤️thank you for uploading

  • @victormanoel7415
    @victormanoel7415 3 ปีที่แล้ว

    otima explicação

  • @shortydancer
    @shortydancer 3 ปีที่แล้ว

    Thank you for this video. My current professor doesn’t do as good a job.

  • @maksphoto78
    @maksphoto78 4 ปีที่แล้ว

    Cool, thanks for using my/Hubble image of the Bubble Nebula :)

  • @Elclaapo
    @Elclaapo 4 ปีที่แล้ว

    Good job Brian. Nice and clear. Good pace, and extra simple.

  • @ankitjha6696
    @ankitjha6696 4 ปีที่แล้ว

    really helpful! thanks sir.

  • @SpaceFactsWax
    @SpaceFactsWax 4 ปีที่แล้ว

    Thanks for uploading. I had the opportunity to see a rocket launch in 2018. Incredible experience. I shared a pretty fun video of the journey to my channel.

  • @sayanjitb
    @sayanjitb 4 ปีที่แล้ว

    Dear sir, can I write about the relationship between change in angular momentum in space fixed frame and body-fixed frame as per the prescription given in taylor book? (dL/dt)_space = (dL/dt)_body +(w x L)

    • @brianjackson415
      @brianjackson415 4 ปีที่แล้ว

      I'm not sure exactly what you're asking, but if you set the gravitational torque equal to (dL/dt)_space, then you can use that equation to calculate the evolution of the top's spin.

    • @sayanjitb
      @sayanjitb 4 ปีที่แล้ว

      @@brianjackson415 Alright sir, thank you indeed.

  • @emmanuelmunkondia3866
    @emmanuelmunkondia3866 4 ปีที่แล้ว

    What is Randall1 and Randall2

    • @brianjackson415
      @brianjackson415 4 ปีที่แล้ว

      I'm afraid I don't know what you mean by "Randall".

  • @emmanuelmunkondia3866
    @emmanuelmunkondia3866 4 ปีที่แล้ว

    Which previous section has the expression for the kinetic energy?

    • @brianjackson415
      @brianjackson415 4 ปีที่แล้ว

      One of the previous sections in chapter 10. I apologize, but I don't have my textbook with me to give a more specific answer.

    • @a.nelprober4971
      @a.nelprober4971 ปีที่แล้ว

      @@brianjackson415 please show full derivation

    • @brianjackson415
      @brianjackson415 ปีที่แล้ว

      @@a.nelprober4971 A full derivation for what? The kinetic energy of rotation? I direct you to chapter 10 in the textbook.

  • @manuupadhyay1944
    @manuupadhyay1944 4 ปีที่แล้ว

    Good explanation, thank you.

  • @เตชภณคําภู
    @เตชภณคําภู 4 ปีที่แล้ว

    Excellent work

  • @ayeshasharif4845
    @ayeshasharif4845 4 ปีที่แล้ว

    Sir plz do the problem of this Pr no6.3

  • @sayanjitb
    @sayanjitb 4 ปีที่แล้ว

    Dear sir, that means if potential is time dependent then we can't no longer deal with phase space trajectory of a system right? As there each plots is assumed to be constant energy. Please help !TIA

    • @brianjackson828
      @brianjackson828 4 ปีที่แล้ว

      You can still plot the phase space trajectory of a system (momentum and position), but a time-dependent potential means the energy is not conserved. So you can't use any equations that assume energy conservation. Let me know if that doesn't answer your question.

    • @sayanjitb
      @sayanjitb 4 ปีที่แล้ว

      @@brianjackson828 thank you so much for giving yours expensive time. Yes sir, it is clear now.

  • @isaakdaniel1422
    @isaakdaniel1422 4 ปีที่แล้ว

    You have no idea how helpful your page is!! Thank you so much

  • @brandonflorida1092
    @brandonflorida1092 4 ปีที่แล้ว

    You didn't define the variable omega.

    • @brianjackson828
      @brianjackson828 4 ปีที่แล้ว

      The omega vector is the spin vector.