Universal Maths
Universal Maths
  • 112
  • 79 080
Geometry problems | Part 49 (Problems by Ahmad Demir)
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems
#hardgeometryproblems #turkishhandbookforgeometry #standartsolutions
#differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryproblemsfast #thebestsolutions #handbookbyAhmadDemir #turkishgeometryproblems #gatheringofhardgeometryproblems #турецкиийсборникзадачпогеометрии #хитростирешениясложныхипростыхгеометрическихпримеров
#секретыинюансырешенияпримеровпогеометрии #сложныепримерыпогеометрииирешения #секретырешенияпримеровпогеометриикоторыениктонезнает
#universalmaths #correspondingangles #alternateangles #solvingproblemsusingthepropertyofcorrespondingangles
#solvingproblemsusingthepropertyofalternateangles
#solvingproblemsusingthepropertyofcorrespondingandalternateangles #kolayçözümler #farklıkolayçözümler #zorsorunlarıçözmenineniyiyolu #geometriproblemlerini hızlı çözmenin sırları #en iyiçözümler #türkgeometrimeseleleri #qiyingeometriyasavollari #qiyingeometriyasavollariyechimlari #turkgeometiyato'plami #basicgeometrics #boshlang'ichgeometriya #worldmath #olympiadproblems #geometryolympiad #hardolypiadproblems #derbesteWegzurLösungkniffligerProbleme #GeheimnissederschnellenLösungvonGeometrieproblemen #diebestenLösungen #HandbuchvonAhmadDemir #türkischeGeometrieprobleme #Gatheringofhardgeometryproblems #problèmesdegéométriedélicats #solutionsfaciles #secrets #problèmesdegéométrie
#problèmesdegéométriedifficiles #manuelturcdegéométrie #solutionsstandard
#différentessolutionsfaciles #lameilleurefaçonderésoudredesproblèmesdélicats #lessecretsdelarésolutionrapidedeproblèmesdegéométrie #lesmeilleuressolutions #manueld' AhmadDemir #problèmesdegéométrieturcs #rassemblementdeproblèmesdegéométriedifficiles #problemascomplicadosdegeometría #solucionesfáciles #secretos #problemasdegeometría
#problemasdegeometríadifíciles #manualturcodegeometría #solucionesestándar
#diferentessolucionesfáciles #lamejormaneraderesolverproblemascomplicados #secretospararesolverproblemasdegeometríarápidamente #lasmejoressoluciones #manualdeAhmadDemir #problemasdegeometríaturca #recopilacióndeproblemasdifícilesdegeometría #problemicomplicatidigeometria #soluzionifacili #segreti #problemidigeometria
#problemidigeometriadifficile #manualeturcoperlageometria #soluzionistandard
#diversesoluzionifacili #ilmodomiglioreperrisolvereproblemicomplicati #segretiperrisolverevelocementeiproblemidigeometria #lemigliorisoluzioni #manualediAhmadDemir #problemidigeometriaturca #raccoltadiproblemidigeometriadifficile #पेचीदाज्यामितिसमस्याएं #आसानसमाधान #रहस्य #ज्यामितिसमस्याएं #हार्डज्योमेट्रीप्रॉब्लम्स #तुर्की हैंडबुकफॉरज्योमेट्री #स्टैंडआर्टसॉल्यूशंस #kniffligeGeometrieprobleme #einfacheLösungen #Geheimnisse #Geometrieprobleme
#schwierigeGeometrieprobleme #türkischesHandbuchfürGeometrie #Standardlösungen
#verschiedeneeinfacheLösungen #derbesteWegkniffligeProblemezulösen #GeheimnissezumschnellenLösenvonGeometrieproblemen #diebestenLösungen #HandbuchvonAhmadDemir #türkischeGeometrieprobleme #SammelnvonschwierigenGeometrieproblemen #까다로운기하학문제 #쉬운해결책 #비밀 #기하학문제 #어려운기하학문제 #기하학을위한터키핸드북 #표준솔루션
#다양한쉬운솔루션 #어려운문제를해결하는가장좋은방법 #기하학문제를빠르게해결하는비결 #최고의솔루션 #아마드데미르의핸드북 #터키기하학문제 #어려운기하학문제모음
#zorgeometriproblemleri #kolayçözümler #sırlar #geometriproblemleri
#zorgeometriproblemleri #türkçegeometrielkitabı #standartçözümler
#farklıkolayçözümler #zorproblemleriçözmenineniyiyolu #geometriproblemlerinihızlıçözmeninsırları #eniyiçözümler #AhmadDemirelkitabı #türkçegeometriproblemleri #zorgeometriproblemlerinintoplanması #складнізадачізгеометрії #простірішення #секрети #задачізгеометрії
#складнізадачізгеометрії #турецькийдовідникзгеометрії #стандартнірішення
#різніпростірішення #найкращийспосіброзв'язуватискладнізадачі #секретишвидкогорозв'язуваннягеометричнихзадач #найкращірішення #довідникАхмадДеміра #турецькізадачізгеометрії #збірникскладнихзадачзгеометрії #қиын ​геометрияесептер #жеңілшешу #құпия #геометрия есептер
#қаттыгеометрияесептер #геометрияғаарналғантүрікшеанықтамалық #стандарттышешімдер
#әртүрліжеңілшешімдер #қиынесептердішығарудыңеңжақсыжолы #геометрияесептерінтезшешудіңқұпиялаы #еңжақсышешу #негізгігеометрия #trickygeometriproblemer #nemmeløsninger #hemmeligheder #geometriproblemer
#hårdegeometriproblemer #tyrkiskhåndbogtilgeometri #standardløsninger
#forskelligenemmeløsninger #debedste måderatløsevanskeligeproblemerpå #hemmelighedervedatløsegeometriproblemerhurtigt #olymiadmaths #secrettermsoftriangle #secretformulasoftriangle #secretformulas #ЕГЭформулы #формулыЕГЭ #mathstrick #mathtricksforfastcalculations #segreti #비밀 #secrets #segreti #segreti #секрети #қиын #геометрия #hemmeligheder #geheimnisse #triangle #triangleclass10 #triangleformulas #ieltspreparation #chunks #11thgradegeometry #10thgradegeometry #9thgradegeometry #8thgradegeometry #7thgradegeometry
มุมมอง: 132

วีดีโอ

Geometry problems | Part 48 (Problems by Ahmad Demir)
มุมมอง 94ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 47 (Problems by Ahmad Demir)
มุมมอง 60ปีที่แล้ว
#satmathoverview #satmathtips #satmathstudyguide #satalgebraandfunctions #satquestionsandanswers #satfunctions #gretestprep #greprep #wordproblems #gretest #satmathratios #grepreparation #arithmetic #coolmathlessons #satmathprep #sat #satgeometry #coolmathlessonsforkids #minimathmovies #satalgebra #satprep #quantitativecomparisons #satmathcrashcourse #satmathpractice #datainterpretation #percen...
Geometry problems | Part 47 (Problems by Ahmad Demir)
มุมมอง 492ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 46 (Problems by Ahmad Demir)
มุมมอง 182ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 44 (Problems by Ahmad Demir)
มุมมอง 252ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisectorsconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryproble...
Geometry problems | Part 43 (Problems by Ahmad Demir)
มุมมอง 279ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 42 (Problems by Ahmad Demir)
มุมมอง 643ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 41 (Problems by Ahmad Demir)
มุมมอง 292ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 40 (Problems by Ahmad Demir)
มุมมอง 8232 ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 39 (Problems by Ahmad Demir)
มุมมอง 1.3K2 ปีที่แล้ว
#trapezium #parallelogram #parallelograms #parallelogramsconcept#trapeziumformulas #trapeziumconcepts #trapezium #similaritiesoftriangles #median #bisector #bisector'sconcept #trickygeometryproblems #easysolutions #secrets #geometryproblems #hardgeometryproblems #turkishhandbookforgeometry #standartsolutions #differenteasysolutions #thebestwaytosolvetrickyproblems #secretsofsolvinggeometryprobl...
Geometry problems | Part 38 (Problems by Ahmad Demir)
มุมมอง 5802 ปีที่แล้ว
Geometry problems | Part 38 (Problems by Ahmad Demir)
Geometry problems | Part 37 (Problems by Ahmad Demir)
มุมมอง 1.1K2 ปีที่แล้ว
Geometry problems | Part 37 (Problems by Ahmad Demir)
Geometry problems | Part 33 (Problems by Ahmad Demir)
มุมมอง 1.1K2 ปีที่แล้ว
Geometry problems | Part 33 (Problems by Ahmad Demir)
Geometry problems | Part 32 (Problems by Ahmad Demir)
มุมมอง 2482 ปีที่แล้ว
Geometry problems | Part 32 (Problems by Ahmad Demir)
Geometry problems | Part 31 (Problems by Ahmad Demir)
มุมมอง 3292 ปีที่แล้ว
Geometry problems | Part 31 (Problems by Ahmad Demir)
Geometry problems | Part 30 (Problems by Ahmad Demir)
มุมมอง 1922 ปีที่แล้ว
Geometry problems | Part 30 (Problems by Ahmad Demir)
Geometry problems | Part 28 (Problems by Ahmad Demir)
มุมมอง 1982 ปีที่แล้ว
Geometry problems | Part 28 (Problems by Ahmad Demir)
Geometry problems | Part 27 (Problems by Ahmad Demir)
มุมมอง 3622 ปีที่แล้ว
Geometry problems | Part 27 (Problems by Ahmad Demir)
Geometry problems | Part 26 (Problems by Ahmad Demir)
มุมมอง 3872 ปีที่แล้ว
Geometry problems | Part 26 (Problems by Ahmad Demir)
Al Khorezmi International Math Olympiad | part 3
มุมมอง 4302 ปีที่แล้ว
Al Khorezmi International Math Olympiad | part 3
Al Khorezmi International Math Olympiad | part 2
มุมมอง 1.5K2 ปีที่แล้ว
Al Khorezmi International Math Olympiad | part 2
Geometry problems | Part 25 (Problems by Ahmad Demir)
มุมมอง 3552 ปีที่แล้ว
Geometry problems | Part 25 (Problems by Ahmad Demir)
Tricky geometry problem
มุมมอง 3952 ปีที่แล้ว
Tricky geometry problem
Geometry problems | Part 24 (Problems by Ahmad Demir)
มุมมอง 2452 ปีที่แล้ว
Geometry problems | Part 24 (Problems by Ahmad Demir)
Geometry problems | Part 23 (Problems by Ahmad Demir)
มุมมอง 4532 ปีที่แล้ว
Geometry problems | Part 23 (Problems by Ahmad Demir)
Tricky problem | Finding the minimum value
มุมมอง 972 ปีที่แล้ว
Tricky problem | Finding the minimum value
Geometry problems | Part 22 (Problems by Ahmad Demir)
มุมมอง 1.4K2 ปีที่แล้ว
Geometry problems | Part 22 (Problems by Ahmad Demir)
Geometry problems | Part 21 (Problems by Ahmad Demir)
มุมมอง 7662 ปีที่แล้ว
Geometry problems | Part 21 (Problems by Ahmad Demir)
Al Khorezmi International Math Olympiad | Geometry 1
มุมมอง 6662 ปีที่แล้ว
Al Khorezmi International Math Olympiad | Geometry 1

ความคิดเห็น

  • @sarmat83
    @sarmat83 2 หลายเดือนก่อน

    Я бы по другому рисовал! Если не найду - сделаю свое видео!

  • @nekk14
    @nekk14 2 หลายเดือนก่อน

    Спасибо за ваш труд,подскажите пожалуйста откуда вы взяли эти задания?

  • @MGRudra0
    @MGRudra0 2 หลายเดือนก่อน

    Try ioqm 2023 questions......2024 was easy but ioqm 2023 level is just 🔥 🔥🔥🔥🔥🔥🔥🔥🔥

  • @User56User15
    @User56User15 4 หลายเดือนก่อน

    👎

  • @djadam1371
    @djadam1371 4 หลายเดือนก่อน

    15

  • @Dota_by_Umrbek
    @Dota_by_Umrbek 6 หลายเดือนก่อน

    Uuu

  • @otabekganjayev5725
    @otabekganjayev5725 7 หลายเดือนก่อน

    Assalamu alaykum ustoz 👍👍👍 juda zo'r

  • @AIDPRO1488
    @AIDPRO1488 7 หลายเดือนก่อน

    риба

  • @ВадимМалюк-р5ы
    @ВадимМалюк-р5ы 10 หลายเดือนก่อน

    В Советском Союзе не было ЕГЭ и прочей дури и на учебу оставалось больше времени. Огромный плюс за ролик.

  • @shaxloxodjiyeva
    @shaxloxodjiyeva ปีที่แล้ว

    👍

  • @владимиранд-д2х
    @владимиранд-д2х ปีที่แล้ว

    достало весь день ищу видео где норм обьяснят и разложат по полкам формулы сокращеного умножения.так и не нашел все слишком замудряют как и это видео

  • @NACHITOツ
    @NACHITOツ ปีที่แล้ว

    Thank.

  • @NACHITOツ
    @NACHITOツ ปีที่แล้ว

    Gracias profesor.

  • @NACHITOツ
    @NACHITOツ ปีที่แล้ว

    Thanks.

  • @adgf1x
    @adgf1x ปีที่แล้ว

    X=tan inverse 1/(2+sq root 3)

  • @Latronibus
    @Latronibus ปีที่แล้ว

    Unless the question gives you that restriction that x is an integer number of degrees, then that is a bad final solution. Actually, the phrasing in the red box in the thumbnail puzzled me, I thought there might be some trick allowing for there to be a true maximum instead of just a supremum.

  • @hadigayar6786
    @hadigayar6786 ปีที่แล้ว

    area of ADC=1/2 AD.X.SIN 30 so x=12

    • @hadigayar6786
      @hadigayar6786 ปีที่แล้ว

      @@universalmaths thank u sir i like all ur videos .they r always different and interesting

  • @maqsudxorazm
    @maqsudxorazm ปีที่แล้ว

    Ajoyib 😊

  • @maqsudxorazm
    @maqsudxorazm ปีที่แล้ว

    😊 Assalomu alaykum, shayxim salomatmisiz!!?

  • @sorenpetersen5709
    @sorenpetersen5709 ปีที่แล้ว

    Too complicated: ABE and BCE are similar, tanx=(2-rt(3))/BE and tanx=BE/(2+rt(3)) thus BE=1 thus tanx=2-rt(3), x = 15

  • @crkr1955
    @crkr1955 ปีที่แล้ว

    Easier way is to find out DC Which is 6+3×square root of 3 Tanalpha=3/(6+3×squareroot of3) 1/2+squareroot of 3) Alpha =15°

  • @francois8422
    @francois8422 ปีที่แล้ว

    (theorem) in every triangle the rectangle of two sides is equal to the square of the bisector of the angle between them increased by the rectangle of the segments in which the bisector divides the third side referred to the triangle ABC translates into x^2 + BE*AE = BC*AC (1) the right triangles ACD and BCE are similar having an angle equal to half of the angle <BCA and the angles <ADC and <BEC equal as they are complementary of <BCA/2 but <BEC and <DEA opposite the vertex are equal therefore the triangle ADE is isosceles having the base angles DE equal and consequently AD=AE=6 from this similarity the proportion BE:6=x: (x+4) from which BE=6x/(x+4) and the proportion BC:AC=BE:6 from which BC=AC*BE/6= AC *x/(x+4) going back to (1) we can write x^2+6*6x/(x+4) = AC*AC *x/(x+4) (1') (Pythagoras on ACD) AC^2= (x+4)^2 −36 , which replaced in (1') gives x^2(x+4)+36x = x(x+4)^2 −36x … 4x=56 x=14 note ^2 = squared

  • @francois8422
    @francois8422 ปีที่แล้ว

    F= meeting point line AE with line BC The triangles ADE and ECF are similar with a similarity ratio of 1 to 3 the sides DE =a and EC=3a being homologous sides in particular EF = 3AE which are also determined by the bisector BE of the angle >ABF in the triangle ABF so the proportion holds AB: (x+CF) = 1:3 , since CF=3AD=18 the previous one turns into 3AB=x+18 and 27=x+18 from which x=9

  • @nehronghamil4352
    @nehronghamil4352 ปีที่แล้ว

    Solution greatly simplified by using the form: a=b^3-(b-2)^3 when simplified: a=6b^2-12b+8, if b=2022 Then a/6=b^2-2b+1 b^2-2b+1=(b-1)^2 So ((a-2)/6)^1/2=b-1=2021

  • @sergiofigueiredovieira8415
    @sergiofigueiredovieira8415 ปีที่แล้ว

    H^2 = m.n => H =1 e depois Pitágoras.

  • @ssswipe
    @ssswipe ปีที่แล้ว

    私はあなたのビデオが大好きです

  • @solomou146
    @solomou146 ปีที่แล้ว

    Καλημέρα σας. Μια άλλη ιδέα. Αφού βρούμε με το θεώρημα διχοτόμου στο τρίγωνο ΑΒC το ΕC, βρίσκουμε με το θεώρημα Stewart το ΑΕ=6. Άρα το τρίγωνο ΑΒΕ είναι ισοσκελές (1). Αν φέρουμε τα ύψη ΑΗ και DZ σχηματίζεται το ορθογώνιο ADZH οπότε ΗΖ=ΑD=x. Από (1)=>ΒΗ=ΗΕ=3/2=1,5. Από την ισότητα των ορθογωνίων τριγώνων (AΒCD ισοσκελές τραπέζιο) ΑΒΗ, DZC έχουμε ZC=BH=1,5. Άρα, BC=BH+HZ+ZC=>7=1,5+x+1,5=>x=4.

  • @johnspathonis1078
    @johnspathonis1078 ปีที่แล้ว

    This problem can be solved much easier by inspection. ABC must lie on the circumference of a circle. BC is the diameter and the circle radius is 6. It is elementry after that.

  • @maqsudxorazm
    @maqsudxorazm ปีที่แล้ว

    Great 👍👍👍👍👍👍👍👍

  • @panPetr0ff
    @panPetr0ff ปีที่แล้ว

    Another nice example, lots of ways to solve it, I used the property that ABCD is a rhombus, where the diagonal BD is an angle bisector of <ABC If we extend AB and EC, we get the triangle BCK. Let's calculate the BK side: BK/6 = (BK-6)/2 ==> BK=9 Then area of BCK is: S = ½ sin(<ABC) * BC * BK = ½ √3/2 * 6 * 9 = √3 * 27/2 Angle bisector of <ABC divides the side CK and thus the area S in the ratio BC:BK = 6:9 = 2:3 The area of the black triangle is therefore: Sx = 2/5 S = 2/5 * √3 * 27/2 = √3 * 27/5

  • @wilfredrohlfing7738
    @wilfredrohlfing7738 ปีที่แล้ว

    More interesting problem: Keep Given the same, but make DF : FC =1: 3 instead of 1: 1. What is the area now? There is an easy method to solve this or the original, so long as one knows how F proportionately splits DC. In fact figures are constructible for all ratios, 1 : a with a >= 3/13 . No possible figure if a < 3/13

  • @husniddinfizmat
    @husniddinfizmat ปีที่แล้ว

    👍👍

  • @solomou146
    @solomou146 ปีที่แล้ว

    Καλησπέρα σας κ. συνάδελφε. Ασχολήθηκα πριν ημέρες πάλι με την πολύ ωραία αυτή άσκηση και τώρα μόλις βρήκα ευκαιρία να σας στείλω μια 2η λύση. Οι ευθείες ΑΒ, CD τέμνονται στο Ο. Επειδή γωνία ODA=180-(90+α)=90-α και Α=Β=α, η γωνία Ο=180-α-(90-α)=90 δηλ. τα τρίγωνα AOD, BOC είναι ορθογώνια και όμοια. Από τις αναλογίες των πλευρών παίρνουμε: AD/BC=OA/OB=OD/OC (1)=>6/16=OD/(OD+8)=>OD=4,8=>OC=4,8+8=12,8. Από Πυθαγόρειο θεώρημα στο BOC: BC^2=OC^2+OB^2=>OB=9,6. Από (1) => 6/16=ΟΑ/9,6=>ΟΑ=3,6=>x=ΑΒ=9,6-3,6=>x=6.

  • @maqsudxorazm
    @maqsudxorazm ปีที่แล้ว

    good luck!

  • @Kitty-y1o1h
    @Kitty-y1o1h ปีที่แล้ว

    🔥🔥🔥🔥

  • @jimlocke9320
    @jimlocke9320 ปีที่แล้ว

    Alternative solution method: ΔADE and ΔABC are similar by pairs of corresponding sides being proportional, pair AD and AB and pair AE and AC, and the angles between them being equal, in this case, common angle DAE. Side AB is twice as long as side AD, so all dimensions of ΔABC are twice those of ΔADE. Therefore, line segment BC is twice as long as line segment DE. ΔGDE and ΔGCB are next proved to be similar with dimensions of ΔGCB double those of ΔGDE. Thus, both the base and height of ΔGCB are double those of ΔGDE and ΔGCB has 4 times the area, or 24 square units. Construct line segment parallel to BC through point G and label intersection with AB as point F and intersection with AC as point H. ΔAFH and ΔABC are similar, with dimensions ΔAFH being 2/3 those of ΔABC. Height ΔGBC, when BC is considered to be its base, is the difference of heights for ΔAFH and ΔABC, or 1/3 the height of ΔABC, when BC is considered to be its base. Thus, ΔABC has 3 times the height of ΔGBC, with common base BC. Therefore ΔABC has 3 times the area of ΔGBC, or 72 square units.

  • @dibyebrottie4237
    @dibyebrottie4237 ปีที่แล้ว

    Totalement faux

  • @hadigayar6786
    @hadigayar6786 2 ปีที่แล้ว

    amazing videos as usual

  • @solomou146
    @solomou146 2 ปีที่แล้ว

    Καλησπέρα σας κύριε συνάδελφε. Κατ' αρχάς να εκφράσω την οδύνη μου για αυτό το τρομερό πλήγμα που δέχτηκε η πατρίδα σας αλλά και η Συρία. Δεν υπάρχουν λόγια να εκφράσει κανείς για να συμπαρασταθεί σε αυτές τις δεκάδες χιλιάδες ανθρώπους που επλήγησαν χάνοντας δικούς τους ανθρώπους ή τις εκατοντάδες χιλιάδες, ίσως, ανθρώπους που παραμένουν μέσα στο κρύο άστεγοι. Ας ελπίσουμε για όσο το δυνατόν λιγότερο πόνο στην συνέχεια. Θα μου επιτρέψετε να δώσω μία άλλη λύση καθαρά Γεωμετρική. Φέρνω DE//AB και έστω Ε το σημείο τομής με την BC. Τότε το ABED είναι παραλληλόγραμμο με ΒΕ=ΑD=6=>ΕC=16-6=10, DE=AB=x , γωνία ΑΒΕ=ΑDΕ=α οπότε ΕDC=90+α-α=90 και το τρίγωνο ECD ορθογώνιο. Από θεώρημα Πυθαγόρα: DΕ^2=10^2-8^2=36=>DΕ=6=>AB=DE=6. Ευχαριστώ.

  • @Константин-л2к3э
    @Константин-л2к3э 2 ปีที่แล้ว

    After finding tri.ADE and AE=6 => sin a = 6 / (4+x) = 2/6 (= 1/2 DE / AE). Hence, x=14. Done!

  • @maqsudxorazm
    @maqsudxorazm 2 ปีที่แล้ว

    Good luck!

  • @Константин-л2к3э
    @Константин-л2к3э 2 ปีที่แล้ว

    i solve it wo trigonometry. everyone should know that in the right tri with height 1/4 of hyp. tha angle is 15. it has pure geomertrical solution

  • @ubermensch9590
    @ubermensch9590 2 ปีที่แล้ว

    So beautiful solution !! Your so smart bro )))

  • @maqsudxorazm
    @maqsudxorazm 2 ปีที่แล้ว

    Byani tezlashadi

  • @maqsudxorazm
    @maqsudxorazm 2 ปีที่แล้ว

    In shaa Alloh oz qoldi

  • @maqsudxorazm
    @maqsudxorazm 2 ปีที่แล้ว

    Ajoyib

  • @hadigayar6786
    @hadigayar6786 2 ปีที่แล้ว

    its 1/3 i think we dont need to the length 6 thank u sir .i am interested in ur videos

  • @dainiusb1114
    @dainiusb1114 2 ปีที่แล้ว

    ADE=EBC(angle-side-angle). AD=6, BC=10.

  • @dainiusb1114
    @dainiusb1114 2 ปีที่แล้ว

    (4/2)/6=6/(4+x)

  • @panPetr0ff
    @panPetr0ff 2 ปีที่แล้ว

    If we know that a square can be "inscribed" in a square, that both have a common center and that a line passing through the center of symmetry divides the figure into equal parts, we can complete the 45-90-45 triangle ∆DEC on the inscribed square and connect AB to the remaining sides of a larger square with area (AB)² = (10+6)² = 256. CD passes through the center of symmetry and thus the area of ABCD is half.