Statistics from A to Z -- Confusing Concepts Clarified
Statistics from A to Z -- Confusing Concepts Clarified
  • 62
  • 201 072
Control Charts Part 2 of 2
Control Charts tell us whether Variation in a Process is within the prescribed limits for Common Cause Variation. The Part 1 video covered general concepts and principles involved with Control Charts and Run Rules. This Part 2 video tells us which Control Chart to use in which circumstances..
มุมมอง: 261

วีดีโอ

Control Charts Part 1 of 2
มุมมอง 3663 ปีที่แล้ว
Control Charts are used in statistics for processes like the disciplines of Six Sigma, as opposed to statistics for populations. They can n tell us whether the process is under control, or if there are external factors affecting the process. This Part 1 video give 5 Keys to Understanding the concept of Control Charts. The Part 2 video (when available) will explain which type of Control Chart to...
Degrees of Freedom
มุมมอง 1.1K4 ปีที่แล้ว
3 Keys to Understanding the concept of Degrees of Freedom (df) plus a table with 10 different formulas for df for 10 different Statistics.
Design of Experiments (DOE) Part 3 of 3
มุมมอง 7764 ปีที่แล้ว
Design of Experiments (DOE) is the discipline used to validate Regression Models. This is the 3rd of my 3 videos on DOE. It covers Full Factorial and Fractional Factorial design, Combinations, Screening Experiments, Interactions, and Confounding
Design of Experiments (DOE) Part 2 of 3
มุมมอง 5264 ปีที่แล้ว
The 2nd of 3 videos on Design of Experiments, which is a method by which Regression models are validated or invalidated. Estimated Effects, Factors, Coded Levels, Interactions, are some of the concepts which are discussed and explained.
Design Of Experiments pt 1 of 3
มุมมอง 6564 ปีที่แล้ว
Design of Experiments is a statistical discipline which can be used to validate Regression Models. Channel: @Statistics from A to Z Confusing Concepts Clarified
Margin of Error
มุมมอง 4.9K4 ปีที่แล้ว
3 Keys to Understanding and helpful graphics and diagrams can give you a more intuitive understanding of the statistical concept of Margin of Error.
Alpha and Beta Errors
มุมมอง 3.7K4 ปีที่แล้ว
4 Keys to Understanding and a helpful Compare and Contrast table help to give you an intuitive understanding of these two statistical concepts
Statistical Errors
มุมมอง 1.7K4 ปีที่แล้ว
5 Keys to understanding the various kinds of Errors in Statistics Alpha and Beta Errors, Sampling Errors, Measurement Errors, Margin of Error, Residuals, Standard Errors
Confidence Intervals -- Part 2 of 2
มุมมอง 3234 ปีที่แล้ว
4 Keys to Understanding the statistical concept of Confidence Intervals as well as examples of different uses for Confidence Intervals and examples of the different formats for displaying them.
Confidence Intervals -- Part 1 of 2
มุมมอง 5124 ปีที่แล้ว
Confidence Intervals is one of two main methods in Inferential Statistics. (Hypothesis Testing its the other.) This video makes extensive use of graphics that teach Compare and Contrast Tables, Concept Flow Diagrams, and even Cartoon drawings to give you an intuitive understanding of this statistical concept.
Inferential Statistics
มุมมอง 6375 ปีที่แล้ว
5 Keys to Understanding Inferential Statistics
Sample Size Part 2: for Measurements/ Continuous Data
มุมมอง 2245 ปีที่แล้ว
3rd video in a playlist on Samples and Sampling. In the channel, "Statistics from A to Z Confusing Concepts Clarified", based on my book of the same name published by Wiley. 5 Keys to Understanding and graphics that teach help you to gain an intuitive understanding of this concept
Sample Size Part 1: Proportions for Count Data
มุมมอง 5355 ปีที่แล้ว
In statistics: how does big does your Sample Size need to be in order to meet your requirements for Level of Confidence and still stay within your desired Margin of Error? This video answers these questions for integer Count Data. The Part 2 video will be for Measurement/ Continuous Data
Samples and Sampling
มุมมอง 2325 ปีที่แล้ว
6 Keys to Understanding the concept of Samples and Sampling in statistics. Simple Random Sampling, Clustered Sampling, Stratified Sampling
Nonparametric Statistical Tests
มุมมอง 2.9K5 ปีที่แล้ว
Nonparametric Statistical Tests
Chii-Square Test for the Variance
มุมมอง 3285 ปีที่แล้ว
Chii-Square Test for the Variance
Chi-square Test for Independence
มุมมอง 5775 ปีที่แล้ว
Chi-square Test for Independence
Chi Square Test for Goodness of Fit
มุมมอง 6995 ปีที่แล้ว
Chi Square Test for Goodness of Fit
t-tests Part 2 of 2 -- Calculations and Analysis
มุมมอง 4235 ปีที่แล้ว
t-tests Part 2 of 2 Calculations and Analysis
t tests Part 1 (of 2 ): Overview
มุมมอง 4675 ปีที่แล้ว
t tests Part 1 (of 2 ): Overview
Residuals
มุมมอง 6245 ปีที่แล้ว
Residuals
Regression -- Part 5: Simple Nonlinear
มุมมอง 1.4K5 ปีที่แล้ว
Regression Part 5: Simple Nonlinear
Regression Pt 4 -- Multiple Linear
มุมมอง 2456 ปีที่แล้ว
Regression Pt 4 Multiple Linear
Regression -- Part 3: Analysis Basics
มุมมอง 4136 ปีที่แล้ว
Regression Part 3: Analysis Basics
Regression -- Part 2, Simple Linear Regression
มุมมอง 6516 ปีที่แล้ว
Regression Part 2, Simple Linear Regression
Regression Part 1 -- Sums of Squares
มุมมอง 2.4K6 ปีที่แล้ว
Regression Part 1 Sums of Squares
Correlation, Part 2: the Correlation Coefficient
มุมมอง 4936 ปีที่แล้ว
Correlation, Part 2: the Correlation Coefficient
Correlation -- Part 1: Covariance
มุมมอง 1.1K6 ปีที่แล้ว
Correlation Part 1: Covariance
Standard Error
มุมมอง 1.6K6 ปีที่แล้ว
Standard Error

ความคิดเห็น

  • @SphereofTime
    @SphereofTime 7 หลายเดือนก่อน

    1:20

  • @SphereofTime
    @SphereofTime 7 หลายเดือนก่อน

    1:00

  • @aveenpatel5577
    @aveenpatel5577 8 หลายเดือนก่อน

    genius is never appreciated in its time. this man will help you to help chatgpt make some gnarly cool models. Take a dip!

  • @larrycosner4648
    @larrycosner4648 10 หลายเดือนก่อน

    This video was tremendously help. It was clear, consice and most importantly didn't skip steps!!!!! Thank you!

  • @mohammadgoudarzirad
    @mohammadgoudarzirad 11 หลายเดือนก่อน

    Great video! like it!!

  • @dc33333
    @dc33333 ปีที่แล้ว

    Good videos Thank You

  • @vylonygo7410
    @vylonygo7410 ปีที่แล้ว

    Very useful series of videos, thank you!

  • @dra.b.zoramawa3019
    @dra.b.zoramawa3019 ปีที่แล้ว

    Very apt, there can be no more explanation than this. Am happy I came across this

  • @enriqueestorga1478
    @enriqueestorga1478 ปีที่แล้ว

    Thank you

  • @kallobarb6087
    @kallobarb6087 ปีที่แล้ว

    You explained this perfectly. thank you

  • @carolinareales3088
    @carolinareales3088 2 ปีที่แล้ว

    Thank you so much for a great explanation, I was so confused, now I leave with a better level of understanding of these concepts. Thank you!!!

  • @elvinphilip3410
    @elvinphilip3410 2 ปีที่แล้ว

    Thank you so much Sir!!

  • @reemashukla2110
    @reemashukla2110 2 ปีที่แล้ว

    Do I understand the concept? Ans: I reject null hypothesis

    • @JDMumma
      @JDMumma 2 ปีที่แล้ว

      Only if there is a difference, change or effect.

  • @Amber-tk8hd
    @Amber-tk8hd 2 ปีที่แล้ว

    this was so helpful! im in psychological statistics and i was getting confused. thank you so much!

  • @revenancesmith3819
    @revenancesmith3819 2 ปีที่แล้ว

    Taking a stats course so I can get into a good nursing program. I was confused by the terminology in my assignment and this has helped so much! I appreciate the clarification.

  • @apoorvadk9635
    @apoorvadk9635 3 ปีที่แล้ว

    Thank you so very much, Sir!

  • @misaghhajiamiri2516
    @misaghhajiamiri2516 3 ปีที่แล้ว

    Damn this videos r useful. thanks a lot. I will suggest ur videos and book to all my classmates for sure.

  • @graysenmclane9662
    @graysenmclane9662 3 ปีที่แล้ว

    2 minutes of wasted time at the beginning of the video just an fyi

  • @LordofGammel
    @LordofGammel 3 ปีที่แล้ว

    really helpful video, thanks a lot!

  • @madgvdl
    @madgvdl 3 ปีที่แล้ว

    ang gulo gulo na nga ng buhay ko dumagdag pa to sa iisipin ko

  • @mohammadhashim693
    @mohammadhashim693 3 ปีที่แล้ว

    thank you sir. this is great video. i was very confuse regarding alpha and p.

  • @namiraghanimi
    @namiraghanimi 3 ปีที่แล้ว

    so usefullllll

  • @badejogbinbimbo8745
    @badejogbinbimbo8745 3 ปีที่แล้ว

    Can my significant level of error be 0.07

  • @diegowooh96
    @diegowooh96 3 ปีที่แล้ว

    I fail tor reject that I won't pass this class

  • @sifisomkhize3715
    @sifisomkhize3715 3 ปีที่แล้ว

    Well explained

  • @marrymevlogs3054
    @marrymevlogs3054 3 ปีที่แล้ว

    Hello from the other side👋👋

  • @carlosvazquez8461
    @carlosvazquez8461 4 ปีที่แล้ว

    Thanks from the 2020!

  • @Ffkslawlnkn
    @Ffkslawlnkn 4 ปีที่แล้ว

    Might have been a good idea to actually explain how anova and regression can be seen as 2 sides of the same coin, i. e. how they can be applied to the same data set.

  • @ChaoticSatire
    @ChaoticSatire 4 ปีที่แล้ว

    Girls be out here giving roundabout rejections like I fail to reject the null hypothesis to spare the guy's feelings

  • @beabiancadolores500
    @beabiancadolores500 4 ปีที่แล้ว

    Thank you so much for this video. I was really confused with the alpha and p value and you cleared up a lot of things!

  • @winvictorywin5612
    @winvictorywin5612 4 ปีที่แล้ว

    Hello sir, I am having airborne dust concentrations data as PM10, PM2.5, PM 1 . These data was taken before and during dust producing work in a field study. N=5 How can i compare these before and during operations data ? It seems that there is percent variation in dust concentrations in atmosphere between before and during operation data based on particle size. Before operation: PM 10 ( particle size less than 10 microns) is sharing 40% of total airborne dust, and PM 2.5 ( particle size less than 2. 5 micron) shares 10% of total airborne dust. During machine operation: PM 10 shares 60% and PM 2.5 10% only. It seems that PM 10 share is increased due to that machine operation? Which test is suitable for analysing these type similar data for discussion ? How to use statistics? Any comparison among these particle sizes? thank u.

  • @tinajaspe3510
    @tinajaspe3510 4 ปีที่แล้ว

    When i say reject i actually saying yes...what the heck! 😱😂

    • @JDMumma
      @JDMumma 2 ปีที่แล้ว

      Explained here: th-cam.com/video/lKtfJYR0cUo/w-d-xo.html

  • @isabelcristinagomez-gutier2504
    @isabelcristinagomez-gutier2504 4 ปีที่แล้ว

    Thanks!!!!!

  • @isabelcristinagomez-gutier2504
    @isabelcristinagomez-gutier2504 4 ปีที่แล้ว

    Thanks!!!!

  • @latiefahmad920
    @latiefahmad920 4 ปีที่แล้ว

    Sir can u send a PDF copy of the book ? @ latiefahmad791@gmail.com

  • @mianpatalinghug3702
    @mianpatalinghug3702 4 ปีที่แล้ว

    Can i ask about chi-square of divergence?

  • @sinaabedini7487
    @sinaabedini7487 4 ปีที่แล้ว

    Great video

  • @TheAdam19a
    @TheAdam19a 4 ปีที่แล้ว

    hello can you please proof why summing up the SST values makes 0?

    • @statisticsfromatoz--confus9466
      @statisticsfromatoz--confus9466 4 ปีที่แล้ว

      Summing up the SST values does not make 0. The whole reason we square the deviations from the Mean is so that we don't get zero. If we were to just sum the deviations from the Mean without squaring, the total would be zero every time. That is due to the definition of deviations and Mean. This is illustrated in slide 12. I hope this helps.

  • @veronicaguerra734
    @veronicaguerra734 4 ปีที่แล้ว

    thank you great explanation

  • @dustychevy1693
    @dustychevy1693 4 ปีที่แล้ว

    Databoos

  • @diegoflores1468
    @diegoflores1468 4 ปีที่แล้ว

    Great video

  • @anoopgahlawat2547
    @anoopgahlawat2547 4 ปีที่แล้ว

    Thank You Sir..Nice Video

  • @x3candybabyx3
    @x3candybabyx3 5 ปีที่แล้ว

    great video!

  • @jonnablue451
    @jonnablue451 5 ปีที่แล้ว

    Its because null hypothesis is no change,no etc. Reject null hypothesis is yes there is change, thats on my understanding 😁

  • @33Kellymc
    @33Kellymc 5 ปีที่แล้ว

    OMG thank you!!!

  • @tahirsaleem123
    @tahirsaleem123 5 ปีที่แล้ว

    Dear Dr Andrew , These videos and your book are really a great resource to learn for novices as well as for the experts When will the next two videos will come on the topic of sampling?

    • @statisticsfromatoz--confus9466
      @statisticsfromatoz--confus9466 5 ปีที่แล้ว

      Thank you, Tahir; I'm glad you find them useful. I'll probably do the next two videos in 2 and 4 weeks.

  • @kamalakantasahu95
    @kamalakantasahu95 5 ปีที่แล้ว

    In your KTU-1 you mentioned statistical properties of a sample are called "statistics". Actually it's 'statistic' not 'statistics' what i know. Am i right, Sir ?

    • @statisticsfromatoz--confus9466
      @statisticsfromatoz--confus9466 5 ปีที่แล้ว

      Sorry, no. "Properties" is plural, so "statistics" must be plural. It can be confusing, because "statistics" has 2 meanings -- the plural of "statistic" and the singular of the mathematical discipline called "statistics".

  • @bjarnij3782
    @bjarnij3782 5 ปีที่แล้ว

    But nominal regression models also exist. Logistic regression is another example where the outcome is categorical as well. Is there a difference between these and ANOVA?

  • @melsamary9160
    @melsamary9160 5 ปีที่แล้ว

    Useful thank u so much

  • @TinyMaths
    @TinyMaths 5 ปีที่แล้ว

    Had to sit and think about the 'alpha error' for a while, but thank you, I finally get it, was having real problems with semantics from my college notes.

    • @statisticsfromatoz--confus9466
      @statisticsfromatoz--confus9466 5 ปีที่แล้ว

      I also did a video on Alpha and Beta Errors, which may be more to the point for you. Also, to see how these concepts work with others, I'd recommend one of my favorite videos, "Alpha, p, Critical Value, and Test Statistic -- How they work together."

    • @statisticsfromatoz--confus9466
      @statisticsfromatoz--confus9466 5 ปีที่แล้ว

      Actually, looking at my notes for the video you saw, I see that it has much the same info on Alpha Error as the video on Alpha and Beta Errors.

    • @TinyMaths
      @TinyMaths 5 ปีที่แล้ว

      @@statisticsfromatoz--confus9466 Ok, thanks very much, I will definitely be checking out your other video about how these things work together. When we covered this in class several months ago, I really assumed I understood it, but now I realize that wasn't the case but thanks to your explanation the pieces are slotting into place nicely.