- 45
- 62 025
OpenDriveLab
Hong Kong
เข้าร่วมเมื่อ 20 มี.ค. 2023
Autonomous Driving and Embodied AI at Shanghai AI Lab. For more details, see our homepage (opendrivelab.com/).
CVPR24 Tutorial | Deva Ramanan: Learning to Plan in A Reactive World
CVPR24 Tutorial | Deva Ramanan: Learning to Plan in A Reactive World
มุมมอง: 240
วีดีโอ
CVPR24 Tutorial | Chelsea Finn: Humanoids and Robot Generalists
มุมมอง 1.2K4 หลายเดือนก่อน
CVPR24 Tutorial | Chelsea Finn: Humanoids and Robot Generalists
CVPR24 Tutorial | Kristen Grauman: Ego(-Exo)4D
มุมมอง 2234 หลายเดือนก่อน
CVPR24 Tutorial | Kristen Grauman: Ego(-Exo)4D
CVPR24 Tutorial | Chonghao Sima & Kashyap Chitta: Hands-on Experience on NAVSIM
มุมมอง 1854 หลายเดือนก่อน
CVPR24 Tutorial | Chonghao Sima & Kashyap Chitta: Hands-on Experience on NAVSIM
CVPR24 FM4AS | Li Chen: Visual World Models as Foundation Models for Autonomous Systems
มุมมอง 3554 หลายเดือนก่อน
CVPR24 FM4AS | Li Chen: Visual World Models as Foundation Models for Autonomous Systems
CVPR24 FM4AS | Autonomous Grand Challenge Part I
มุมมอง 4884 หลายเดือนก่อน
CVPR24 FM4AS | Autonomous Grand Challenge Part I
CVPR24 FM4AS | Andrei Bursuc: Foundation Models in the Automotive Industry
มุมมอง 3654 หลายเดือนก่อน
CVPR24 FM4AS | Andrei Bursuc: Foundation Models in the Automotive Industry
CVPR24 FM4AS | Panel: Challenges in Building Foundations Models for Embodied AI
มุมมอง 1824 หลายเดือนก่อน
CVPR24 FM4AS | Panel: Challenges in Building Foundations Models for Embodied AI
CVPR24 FM4AS | Rares Ambrus: Visual Foundation Models for Embodied Applications
มุมมอง 2974 หลายเดือนก่อน
CVPR24 FM4AS | Rares Ambrus: Visual Foundation Models for Embodied Applications
CVPR24 FM4AS | Ted Xiao: What's Missing for Robotics-first Foundation Models?
มุมมอง 5294 หลายเดือนก่อน
CVPR24 FM4AS | Ted Xiao: What's Missing for Robotics-first Foundation Models?
CVPR24 FM4AS | Autonomous Grand Challenge Part II
มุมมอง 3624 หลายเดือนก่อน
CVPR24 FM4AS | Autonomous Grand Challenge Part II
CVPR24 FM4AS | Alex Kendall: Building Embodied AI to be Safe and Scalable
มุมมอง 8434 หลายเดือนก่อน
CVPR24 FM4AS | Alex Kendall: Building Embodied AI to be Safe and Scalable
CVPR24 FM4AS | Sergey Levine: Robotic Foundation Models
มุมมอง 1.9K4 หลายเดือนก่อน
CVPR24 FM4AS | Sergey Levine: Robotic Foundation Models
CVPR24 FM4AS | Sherry Yang: Foundation Models as Real-World Simulators
มุมมอง 6814 หลายเดือนก่อน
CVPR24 FM4AS | Sherry Yang: Foundation Models as Real-World Simulators
CVPR24 FM4AS | Welcome and Opening Remarks
มุมมอง 5554 หลายเดือนก่อน
CVPR24 FM4AS | Welcome and Opening Remarks
CVPR23 E2EAD | Team 42dot, Technical Report
มุมมอง 897ปีที่แล้ว
CVPR23 E2EAD | Team 42dot, Technical Report
CVPR23 Plenary Talk | [Best Paper] UniAD: Planning-oriented Autonomous Driving
มุมมอง 6Kปีที่แล้ว
CVPR23 Plenary Talk | [Best Paper] UniAD: Planning-oriented Autonomous Driving
CVPR23 E2EAD | 3D Occupancy Prediction Challenge
มุมมอง 5Kปีที่แล้ว
CVPR23 E2EAD | 3D Occupancy Prediction Challenge
CVPR23 E2EAD | nuPlan Planning Challenge
มุมมอง 3.4Kปีที่แล้ว
CVPR23 E2EAD | nuPlan Planning Challenge
CVPR23 E2EAD | Deva Ramanan, Invited Talk
มุมมอง 2.1Kปีที่แล้ว
CVPR23 E2EAD | Deva Ramanan, Invited Talk
CVPR23 E2EAD | Sergey Levine, Invited Talk
มุมมอง 1.6Kปีที่แล้ว
CVPR23 E2EAD | Sergey Levine, Invited Talk
CVPR23 E2EAD | Jose M. Alvarez, Invited Talk
มุมมอง 1.4Kปีที่แล้ว
CVPR23 E2EAD | Jose M. Alvarez, Invited Talk
CVPR23 E2EAD | Yuning Chai, Invited Talk
มุมมอง 1.4Kปีที่แล้ว
CVPR23 E2EAD | Yuning Chai, Invited Talk
CVPR23 E2EAD | Patrick Langechuan Liu, Invited Talk
มุมมอง 4.1Kปีที่แล้ว
CVPR23 E2EAD | Patrick Langechuan Liu, Invited Talk
Great presentation, thanks!
This is incredible! Will try and make the open source work with my robot
why am i here ?
Video is corrupted
Could you provide a detailed description?
I really wish i could afford american education
barely auditable, any documents or scripts or slides could be shared? Thanks!
Sorry the panel session does not have slides. But the audio should be the same as at the spot. For slides for other sessions you may check opendrivelab.com/cvpr2024/workshop/
Data -> Architecture -> Model -> Algorithm. Iterate across the whole stack
Can these ideas be extended to Autonomous driving?
Solving a control problem with a machine learning? Why is that a good idea?
I'm really impressed by this work! Great great work! 👍👍
Correction: 04:18 That should be 40 deg-of-freedom body control instead of 200.
No sound. Is it only me not hearing?
Agree, no sound!
Until minute 3:25 they were muted :')
There are several algorithms and techniques used for predictions and planning in autonomous vehicles. Here are some commonly employed methods: Predictions Algorithms: a. Kalman Filters and Extended Kalman Filters: These recursive estimation algorithms are widely used for sensor fusion and tracking the motion of objects based on noisy sensor measurements. b. Particle Filters: They are used for state estimation and tracking, particularly when dealing with non-linear and non-Gaussian systems. c. Hidden Markov Models (HMM): HMMs are probabilistic models used for predicting the future behavior of objects by considering their current states and previous observations. d. Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM): These deep learning architectures can be used to learn temporal patterns from historical sensor data and predict future trajectories. e. Social Force Models: These models simulate the interactions between pedestrians and vehicles by considering social behaviors and physical forces. Planning Algorithms: a. A* (A-Star) Algorithm: A* is a popular graph search algorithm used for finding the shortest path between two points in a graph representation of the environment. b. RRT (Rapidly-Exploring Random Trees): RRT is a sampling-based algorithm that efficiently explores the configuration space of a vehicle and generates feasible paths by incrementally growing a tree. c. Model Predictive Control (MPC): MPC is a control algorithm that plans optimal trajectories by predicting the system's future behavior and iteratively optimizing control inputs to minimize a defined cost function. d. Dynamic Programming: Dynamic programming algorithms, such as Value Iteration and Policy Iteration, can be used for planning optimal paths by solving a sequence of subproblems. e. Reinforcement Learning: Reinforcement learning algorithms, such as Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), can learn to make planning decisions through interactions with the environment and receiving rewards or penalties. It's worth noting that autonomous driving systems often employ a combination of these algorithms and techniques, and the specific choices may vary depending on the complexity of the environment, the level of autonomy, and the available sensor suite. Additionally, ongoing research and advancements in machine learning, optimization, and robotics continue to contribute to the development of more sophisticated and efficient predictions and planning algorithms for autonomous vehicles.
thanks this is a great pointer
악
ooooo!
Thanks for the talk.
Thanks Sergey!
Nice!
stolen from tesla
Boo, suck it up. Chinese are way smarter than the average american.
First? 😂
We upload a supplementary video to address the audio issue during 42dot's sharing part, check it out at th-cam.com/video/HyTojp5bSxA/w-d-xo.html👈
how to identify the corner case in loop?
🎉🎉🎉Great insight on Occupancy work