Doulton Wiltshire
Doulton Wiltshire
  • 20
  • 140 007
Learn Calculus - Constrained Optimization with a Cylinder
Let's pull out ALL the high school math formulas for this constrained optimization problem involving the volume and surface area of a can.
มุมมอง: 60

วีดีโอ

Learn Calculus - Maximize the Volume of Luggage
มุมมอง 84ปีที่แล้ว
This is a constrained optimization problem with a goal of maximizing the volume of a box (in this case a rectangular piece of luggage). We use two constraints to reduce the Volume equation to a single variable before using the derivative to find the dimensions which maximize the volume. I solve this problem with the quadratic equation and using an alternative solution.
Learn Calculus - The Three Types of Critical Points
มุมมอง 290ปีที่แล้ว
When asked to find and classify critical points it is easy to overlook singular points and end points. In this example, we will look at each of the types of critical points (stationary, singular and endpoints) as well as classify them as global or local extrema.
Annuities
มุมมอง 1004 ปีที่แล้ว
An introduction to annuities for Comm 121 and Comm 122
Time Value of Money
มุมมอง 1094 ปีที่แล้ว
In introduction to the concept of Time Value of Money for Comm 121 and Comm 122.
Introduction to Regression in Excel
มุมมอง 1864 ปีที่แล้ว
This is a practical walk through of running a regression in Excel and interpreting the results. We will: 1. Run a simple linear regression 2. Run a multivariable regression 3. Determine the resulting model 4. Assess the model for how good it is and determine if all variables should be included
Inventory with Binary Variables (Excel)
มุมมอง 7K5 ปีที่แล้ว
We will use solver to implement a solution to a linear programming problem. This problem is an inventory problem (production over multiple periods with an ending inventory variable for each period) with some additional binary variables (the decision to produce each period and the decision to hold inventory in each period).
Comm 161 Input Output
มุมมอง 2145 ปีที่แล้ว
Comm 161 Input Output
Comm 161 Logarithmic Diff
มุมมอง 1395 ปีที่แล้ว
Comm 161 Logarithmic Diff
Comm 161 Implicit Differentiation
มุมมอง 1585 ปีที่แล้ว
Comm 161 Implicit Differentiation
Comm 161 Money Stock Question
มุมมอง 1075 ปีที่แล้ว
Comm 161 Money Stock Question
Comm 163 BDM Probability
มุมมอง 4005 ปีที่แล้ว
Comm 163 BDM Probability
Comm 161: Implicit and Logarithmic Differentiation
มุมมอง 895 ปีที่แล้ว
Comm 161: Implicit and Logarithmic Differentiation
Advanced Regression Analysis
มุมมอง 1.2K5 ปีที่แล้ว
In this video we cover some of the more advanced regression analysis techniques for Comm 162. We will calculate confidence Intervals and the pvalue ourselves to make an assessment.
Calculating Minimum Sample Size
มุมมอง 7975 ปีที่แล้ว
Calculating the minimum sample size required when estimating a population parameter. This video goes through the calculations when dealing with a mean or a proportion.
Assessing Normality of the Residuals using a Histogram
มุมมอง 20K5 ปีที่แล้ว
Assessing Normality of the Residuals using a Histogram
Comm 162: Intro to excel (histogram)
มุมมอง 3936 ปีที่แล้ว
Comm 162: Intro to excel (histogram)
Comm 163 - Shortest Path Problem - Excel
มุมมอง 54K7 ปีที่แล้ว
Comm 163 - Shortest Path Problem - Excel
Bayes' Theorem
มุมมอง 54K7 ปีที่แล้ว
Bayes' Theorem
Comm 162 Midterm: Data Types
มุมมอง 1477 ปีที่แล้ว
Comm 162 Midterm: Data Types

ความคิดเห็น

  • @linhvu-li1ix
    @linhvu-li1ix 2 หลายเดือนก่อน

    excuse me, can you explain for me why out - in??

  • @ScorpioGeminis
    @ScorpioGeminis 2 หลายเดือนก่อน

    everybody talking about the error but not talking about the clear explanation in the beginning.

  • @ercancem
    @ercancem 2 หลายเดือนก่อน

    Hello, Doulton. What do you use to write during your screencast? Is that some kind of smart pen the tablets have?

    • @doultonwiltshire7504
      @doultonwiltshire7504 2 หลายเดือนก่อน

      hey - I have an HP Spectre (touch screen laptop) and I use a stylus and write on it in tablet mode!

  • @joetod6711
    @joetod6711 3 หลายเดือนก่อน

    Well presented.

  • @bonarges1
    @bonarges1 3 หลายเดือนก่อน

    The best!! Hands down

  • @flazzydirect1854
    @flazzydirect1854 6 หลายเดือนก่อน

    Now I get the theorem thanks a lot

  • @Paul-zp6wx
    @Paul-zp6wx 7 หลายเดือนก่อน

    I'm a new comer for coding and love to play around. After watching your excellent video, I got an idea about finding the path with maximum score. I got screwed up many time and along the way I learn your logic of your code. Then I finally got it by modifying your code. The first table, I change every cell with value of 100 to -10. On Solver I change Objective to Maximize. My Variable range is the same as your. My Constraints I put all the values of Total Out and Total in to be equal or less than zero (<= 0) And the rest are the same as your code. Got Total distance = 12 , from 1 to 3, to 5 , to 4 , then to 6. Thank for inspiring me.

  • @erickkadoh777
    @erickkadoh777 8 หลายเดือนก่อน

    Your explanation is very confusing...go and check how @organic chemistry tutor presents

  • @salahuddinshinwari1875
    @salahuddinshinwari1875 8 หลายเดือนก่อน

    Working ❤ thanks

  • @aswinimechiri3157
    @aswinimechiri3157 8 หลายเดือนก่อน

    extraordinary explanation mam...thank you.

  • @godfidence1
    @godfidence1 9 หลายเดือนก่อน

    The presentation is appreciated but the calculation in the first question is way too off.. still good efforts!

  • @vincentkaapehi6046
    @vincentkaapehi6046 9 หลายเดือนก่อน

    The second question confusing!! We don’t even know what we are being ask to look for?? You just started answering

  • @hiidf
    @hiidf 9 หลายเดือนก่อน

    really nice way to teach i love it

  • @kofiasamoah9796
    @kofiasamoah9796 11 หลายเดือนก่อน

    Thank you very much. Your videos are very detailed and easy to understand. It's broadening my understanding in Data Analysis. I will be grateful if I can have your email and send your a mail. I would love to become an expert in using the Excel and any other statistical tool for data analysis. Thank you

  • @dwivedys
    @dwivedys ปีที่แล้ว

    Using Baye’s theorem: P(M|SE) = P(SE|M) * P(M) / (P(SE|M)*P(M) + P(SE|F)* P(F)) --- (1) = 5%*60%/(5%*60% + 4%* 10%) = 3%/7% = 0.42857 or 42.86% is the probability that someone is male given that someone is showing a side effect. Let’s break it down: What % of overall population shows side effect? That is 10% of 40% females = 4% and 5% of 60% males = 3%. So this is total 7%. This is what goes in the denominator of (1) above: P(SE) = P(SE|M)* P(M) + P(SE|F)* P(F). Allow me to take another shot at explaining this without losing our heads in all the formulas. ‘ You have a set of males and females (in a gender binary world). 40% females and 60% males. Of the 40% females 10% have SE. So how many females with SE? 10% of 40% = 4% Similarly how many males with SE? It is given 60% of population is males and 5% of them have SE so 5% * 60% = 3%. So right there you have 3% + 4% = 7% of the overall population that’s showing SE. How many of them is males? We know already that is 5% * 60% = 3%. So of the 7% actually 3% are males. So that’s 3% / 7% or 42.86% is the answer That 3% + 4% is actually the denominator P(SE|M) * P(M) + P(SE|F) * P(F) And 3% is simply P(SE|M) * P(M)

  • @ChisomoKampaliro
    @ChisomoKampaliro ปีที่แล้ว

    Thanks for this very helpful lesson. Please make more videos on probability. Your explanations are easy to understand

  • @jim2376
    @jim2376 ปีที่แล้ว

    The answer is 42.85% probability not 46.15%.

  • @GodbrandXD
    @GodbrandXD ปีที่แล้ว

    I love the way u teach ma'am 🥹. I understand everything. Much love ❤️

  • @audryk.7825
    @audryk.7825 ปีที่แล้ว

    How did you come up with constraint 1,0,0,0,0,-1? 6:09

  • @jafacam
    @jafacam ปีที่แล้ว

    Hello. Thank you for putting up your shortest path solution. I am trying to do something similar-but-more complex, and am having trouble, and I was wondering if you could give me some guidance. What I want to in Excel with shortest paths is: 1) layout a large m-by-n matrix of nodes, with distances in meters between them. I'll use pseudo-chess-board nomenclature with one axis being A-Z and one axis being numbered 1-n (calling nodes "A1", "C3", "F7", etc) 2) have the ability to request multiple shortest paths from (say) B3->F8, G2->A14, F2->R23, etc 3) partially congest a route based on previous paths. For example, if a route is found it may be tagged as 25% congested between two nodes. Another route may add to this. Eventually the route would be congested, and an alternative shortest path would have to be found. 4) ideally I'd like to make it iteratively optimise, but I realise that may be impossible to do in Excel, so the above congestion may have be sequentially built in Do you know of any examples where such a thing has been done? Thank you in advance, Adam

  • @fernandapw08
    @fernandapw08 ปีที่แล้ว

    Thank you great video

  • @BANKO007
    @BANKO007 ปีที่แล้ว

    Excellent explanation from first principles that is much better than most, which treat Bayes as a black box formula. Good also that the answer is scientifically accurate wrt gender. Imagine the contortions necessary if sex was arbitrary and based on self-identification? Statistics would be meaningless if sex were treated as a fiction.

  • @baskarp9425
    @baskarp9425 ปีที่แล้ว

    Hello Doulton.. Hope you are doing great.. I saw your Statistics videos and each and every explanation was awesome.. Teaching is a skill which everyone can not get it.. You have that naturally.. It will be great if you post more and more on Statistics and other subjects what you know. Thanks for your wonderful knowledge sharing :)

  • @yvonnewhoever5238
    @yvonnewhoever5238 ปีที่แล้ว

    Very Useful

  • @leomcpie7904
    @leomcpie7904 2 ปีที่แล้ว

    BTW ATTENTION: THE PROBABILITY OF P(SE) IS NOT 0.065 BUT 0.07!

  • @squarerootof2
    @squarerootof2 2 ปีที่แล้ว

    "Just an example, not real life at all", lmao! You're totally delusional, lady. Or should I say, "dude"?

  • @JobGathirufisher
    @JobGathirufisher 2 ปีที่แล้ว

    This was really helpful.

  • @pashtun-travels-uk
    @pashtun-travels-uk 2 ปีที่แล้ว

    done

  • @esonanakani579
    @esonanakani579 2 ปีที่แล้ว

    I think there is a problem on the second example, the first tree diagram, the weak part (percentages of indicating and not indicating)

  • @bytemoney5655
    @bytemoney5655 2 ปีที่แล้ว

    its always the people who have a pen and paper setup that will save your life thank you very much

  • @kopanomoss5752
    @kopanomoss5752 2 ปีที่แล้ว

    nice

  • @dopsa4953
    @dopsa4953 2 ปีที่แล้ว

    NOT WORKING

    • @dopsa4953
      @dopsa4953 2 ปีที่แล้ว

      SORRY, WORKING

  • @danteconciatori1094
    @danteconciatori1094 2 ปีที่แล้ว

    positive should be 90% and negative should be 10% for the market question

  • @akbarhussain285
    @akbarhussain285 3 ปีที่แล้ว

    Nice video, but it will not work for some other examples. I tried this mothed several times. but the result is wrong

  • @princessronaalcantara6593
    @princessronaalcantara6593 3 ปีที่แล้ว

    I like your strategy ❤️ thank you!

  • @BiranchiNarayanNayak
    @BiranchiNarayanNayak 3 ปีที่แล้ว

    If the residuals are not normally distributed, then is the predictions < target or predictions > target ?

  • @agapaojumba9651
    @agapaojumba9651 3 ปีที่แล้ว

    Wonderful presentation. I have understood well the Bayes' Theorem

  • @Suresh8848m
    @Suresh8848m 3 ปีที่แล้ว

    Wow....! Great explanation. Please keep it up.

  • @kebman
    @kebman 3 ปีที่แล้ว

    Node 0: Market State Edge 0.0 Strong: 70% → Node 0.0 Research Result → Edge 0.0.0 Positive: 80% → Edge 0.0.1 Negative: 20% Edge 0.1 Weak: 30% → Node 0.1 Research Result → Edge 0.1.0 Positive: 10% → Edge 0.1.1 Negative: 90% The probability for a positive result: P(+) Is the combination of the branches that contain “positive” in the original tree. So in other words: Edge 0.0 Strong: 70% → Edge 0.0.0 Positive: 80% and Edge 0.1 Weak: 30% → Edge 0.1.0 Positive: 10% Applying the denominator of Bayes' Theorem: Positive: P(A|B)P(B) + P(A|!B)P(!B) ⇒ P(+|S)P(S) + P(+|W)P(W) ⇒ P(0.8)P(0.7) + P(0.1)P(0.3) ⇒ (0.8)(0.7)+(0.1)(0.3) ⇒ 0.59 = 59% And thus we automatically know the answer to negative being 41%. P(S|+) = P(+|S)P(S) / P(+) ⇒ P(S|+) = P(0.8)P(0.7) / P(0.59) ⇒ P(S|+) = (0.8)(0.7) / (0.59) ⇒ 0.949152542 ≈ 0.95 P(S|-) = P(-|S)P(S) / P(-) ⇒ P(S|-) = P(0.2)P(0.7) / P(0.41) ⇒ P(S|-) = (0.2)(0.7) / (0.41) ⇒ 0.341463415 ≈ 0.34 Node 0: Research Result Edge 0.0: Positive: 59% → Node 0.0 Market State → Edge 0.0.0 Strong: 95% → Edge 0.0.1 Weak: 5% Edge 0.1: Negative: 41% → Node 0.1 Market State → Edge 0.1.0 Strong: 34% → Edge 0.1.1 Weak: 66%

  • @kebman
    @kebman 3 ปีที่แล้ว

    A' = nought A or not A? Or nawt A??? With programming we'd say either !A or A = 0 (not A and naught A respectively). Edit: Nevermind. I now see that it's "Not A" ^^

  • @richardgordon
    @richardgordon 3 ปีที่แล้ว

    I love this video😍. By far the best explanation of how to figure out Bayesian’ theorem.

    • @mohamedabdou-salami
      @mohamedabdou-salami 9 หลายเดือนก่อน

      I totally agree with you. Watched so many videos, but this nailed it for me. Thank you from Zambia.❤

  • @uthpakhi
    @uthpakhi 3 ปีที่แล้ว

    Thanks

  • @classicalsantos384
    @classicalsantos384 3 ปีที่แล้ว

    how do it get to you questions pls send your facebook name or Email account

  • @janendonye1639
    @janendonye1639 3 ปีที่แล้ว

    P(a tutorial from you is awesome)=1

  • @samore11
    @samore11 3 ปีที่แล้ว

    Your P(SE) should be .07, not .065. The final answer is 3/7 = .429

  • @taufiquddikhan1168
    @taufiquddikhan1168 3 ปีที่แล้ว

    Indeed, this is a great help to teachers of Mathematics.

  • @jackrubin6303
    @jackrubin6303 3 ปีที่แล้ว

    In your first example (0.1x0.4) + (0.05x0.6) = 0.07 not 0.065. In your second example (0.2x0.7)/0.41 = 0.3415 not what you calculate

  • @bazooka5780
    @bazooka5780 4 ปีที่แล้ว

    YOU ARE A HERO not a TEACHER MISS XD

  • @666enough
    @666enough 4 ปีที่แล้ว

    I want to thank the author and also Google developers who made it possible for me to stumble upon this video and learned the new intuition about how the Bayes` Theorem works. I even watched 3Blue1Brown`s excellent visualization, but still didn't feel confident about ACTUAL understanding of this relationship between probabilities. To be honest, it scares me to think about how many of these gems are buried deep on the Internet and the chances to find them are only getting smaller.

    • @DoultonWiltshire
      @DoultonWiltshire 4 ปีที่แล้ว

      Oh wow. Thanks. This was just a random video I threw together for some students (hence the calculation error). I am glad others have found it helpful.

  • @aashayshirodkar
    @aashayshirodkar 4 ปีที่แล้ว

    Hi, Thank you very much. This helped me resolving my doubts.. Aashay S. (India 🇮🇳 )