Jacob Sapir
Jacob Sapir
  • 19
  • 959

วีดีโอ

How I Learned AI: Are You Overeating?
มุมมอง 1019 ชั่วโมงที่ผ่านมา
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
How I Got Paid as an AI Expert Without an AI Degree: My Story
มุมมอง 1914 วันที่ผ่านมา
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Should I Adopt AI? What No One Tells You About Trusting Tech
มุมมอง 1014 วันที่ผ่านมา
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Should I Learn AI in 2024? Unpacking Outdated Practices
มุมมอง 9721 วันที่ผ่านมา
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Sacrifices in AI Learning: What’s Really Worth Your Time?
มุมมอง 1421 วันที่ผ่านมา
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Good and Bad Shortcuts in Product Creation: How to Avoid the Costly Ones
มุมมอง 1128 วันที่ผ่านมา
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
How to Get Started Learning Python: Focus and Simplify
มุมมอง 23หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Create AI Products Fast What NOT to Waste Time On
มุมมอง 33หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Behind the Buzzwords: The Real Reason AI Sounds Complicated
มุมมอง 8หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Why You Should Avoid Math and Algorithms at All Costs
มุมมอง 473หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Why an AI Programming Degree Won't Actually Help You Build Products
มุมมอง 33หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
AI Vocabulary for Beginners: Structuring Your First Neural Network
มุมมอง 502 หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Why You Don’t Need a Programming Background to Build AI Products
มุมมอง 312 หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
Neural Networks Explained: Why They Matter More Than Ever
มุมมอง 362 หลายเดือนก่อน
If you want to join my community and get exclusive updates, click here: 👉 training.realtechnologytools.com/my-contacts
The Pitfalls of Pre-Packaged AI Solutions
มุมมอง 252 หลายเดือนก่อน
The Pitfalls of Pre-Packaged AI Solutions
Should I Learn GitHub in 2024? A No Nonsense Guide
มุมมอง 113 หลายเดือนก่อน
Should I Learn GitHub in 2024? A No Nonsense Guide
Rethinking Productivity: Lessons from the Real World
มุมมอง 143 หลายเดือนก่อน
Rethinking Productivity: Lessons from the Real World
The Gap Between Academia and Practice: Why PhDs Don't Build Products
มุมมอง 533 หลายเดือนก่อน
The Gap Between Academia and Practice: Why PhDs Don't Build Products

ความคิดเห็น

  • @Rohan-v6u6u
    @Rohan-v6u6u 19 วันที่ผ่านมา

    What are some alternate IT jobs that don’t require learning AI?

  • @Sayonora
    @Sayonora หลายเดือนก่อน

    I am learning AI and ML, but I like to learn the basics, am I not an engineer, am I a researcher??

    • @compileddude
      @compileddude หลายเดือนก่อน

      you are AWESOME

  • @billykeys962
    @billykeys962 หลายเดือนก่อน

    How about someone who wants to write a phd paper ?

  • @Gauchland
    @Gauchland หลายเดือนก่อน

    I took part in a uni robotics project, and for a while I was the only one writing code that worked in reality, while more experienced coders wrote untested drafts based on their experience(it was an autonomous robot project). They also really resented me as they were supposed to be more “qualified”. Anyway, reason why I’m saying this is because after the experience I went onto learning mathematical python a bit more deeply, but you reminded me that I did learn a lot simply from doing things practically, and also reminded me that I don’t need to “wait” to finish all the abstract stuff before returning to the practical.

  • @fluctura
    @fluctura 2 หลายเดือนก่อน

    Sigmoid is not used much these days. LLMs often use the gaussian - GeLU and for classification task you often use ReLU.. Sigmoid is slow. And ReLU and GeLU are easy to explain! 😊 If one wants to know how to use, one needs to have basic understanding of the activation functions ans when to use what based on their characteristics. Only needs an explanation of what non-linearities are and how they are mapped (embedded) into features and eventually single floating point numbers. Its all soooo easy. But its made sooo complicated by an industry that feeds itself high salaries just because they speak buzzword bingo alö day 😅

  • @fluctura
    @fluctura 2 หลายเดือนก่อน

    Okay, sometimes we do go deep into the algo :) But most time you can use stock library algos.. just what comes with pytorch

  • @fluctura
    @fluctura 2 หลายเดือนก่อน

    Without a programming background you can let ChatGPT generate those lines of code 😊 And yes, you are right; CS is overcomplex. It is possible to do all that with simple code. It's just people intentionally make it complicated because they want it fancy... And right -- Git you don't need too, if you are a lone wolf coding. There is local file system history in IDEs and the OS.. like Time Machine

  • @fluctura
    @fluctura 2 หลายเดือนก่อน

    The prompt usually is not chosen by the LLM. The prompt is tokenized, positional encoded, then passed to the normalization, through the attention mechanism, where its semantic context helps refining the prediction of the next token with semantic focus, then again normalized after it has been masked and softmax -- finally passed into MLP (using GeLU for captuning non-limearities) and eventually results in a logits list mapping to the tokenizer vocabular, so every token gets a log prob assigned. Softmax converts to %, topK and temperature acts as sampling and selection. Finally the next token is predicted and that continues.. all tokens including the last predicted on get refeeded (auto regressive automata) until a special end token is predicted. The prompt is always fed into the LLM directly. There might be a non-AI system in fromt that passes the user prompt plus context (loaded via RAG workflow, vector db) in a prompt template -- but eventually the LLM processes a defined prompt, not one selected by an AI usually.

  • @SurprisedDivingBoard-vu9rz
    @SurprisedDivingBoard-vu9rz 2 หลายเดือนก่อน

    Because they have to find new use.